KLauS3 ASIC

Implementation Status, Characterization & Plans

Konrad Briggl, KIP, Uni Heidelberg

Prototypes in 180nm UMC CMOS

Reminder:

Front-end SiPM charge measurement, time stamping Optimize for low gain SiPMs (>10⁵)

→ SiPM bias tuning presented in Munich: 2V range

ADC development

Two operation modes: SiPM gain calibration – 12bit resolution MIP quantization – 10bit resolution

 \rightarrow 10 bit operation mode results presented in Munich

Prototypes in 180nm UMC CMOS

Submission March / 15 Front-end Most critical blocks implemented ADC channel

Received in July

Submission May / 15 Front-end Most remaining front-end blocks added [Low gain stage & Trigger]

ADC

bug fix in control logic \rightarrow 12b mode now working

Received in October

[KLauS3.0 – frontend & ADC]

[KLauS3.0 test setup]

Front-end: Blocks

[Channel front- end blocks]

Input stage:

Front-end: Blocks

State of implementation

Linear range vs. VCC (High gain)

Charge injection measurements Cd=33pF

Linear range @ max INL = 1%: ≈ 2.8pC

Voltage drop in supply lines expected

→ Check linearity for **different VCC** "LL" corner: VCC18=1.6V ; VCC33=3.1V "TT" corner: VCC18=1.8V ; VCC33=3.3V "HH" corner: VCC18=2.0V ; VCC33=3.5V

Linear range vs. VCC (Low gain)

Charge injection measurements Cd=33pF

Linear range @ max INL = 1%: ≈ 160pC

Same VCC corners Again changed linear range with VCC18

Small gain & pedestal change \rightarrow To be investigated

Trigger branch: Threshold setting

Two DACs to tune threshold:

- Global 6 bit DAC + scaling bit (for all channels)
- 4 bit DAC for fine-tuning (each channel)
- \rightarrow Charge noise: 8fC typ.
- → Threshold configuration resolution (4b DAC): 5fC

Front-end measurements: test with sensors

TELEDYNE LECRO

~10mV / px

Two SiPM models tested

10μm pixel device [Gain ~1.5x10⁵] [Hamamatsu S12571-010C]

25μm pixel device [Gain ~2.75x10⁵] [Hamamatsu S10362-11-025C]

Front-end & ADC

Combined operation: Connect front-end & ADC on PCB level (same chip) ADC response in 10bit quantization mode Large gain (50um pixel) SiPM used Simple DNL correction (not free of remaining effects) → Visible spectrum

700

750

850

800

900

ADC bin

1000

950

ADC: Pipeline (SiPM calibration) mode

Previous meeting: ADC linearity in 10 bit mode

12 bit (SiPM calibration) mode not Accessible due to bug in digital part

Updated version (2nd submission): Pipeline stage working:

12b pipelined ADC

AHCAL meeting 12/2015

ADC: Pipeline (SiPM calibration) mode

Previous meeting: ADC linearity in 10 bit mode

12 bit (SiPM calibration) mode not Accessible due to bug in digital part

Updated version (2nd submission): Pipeline stage working:

6 bit from 1st stage +8 bit from 2nd stage => 12bit quantization *(2 bit redund.)*

Some analysis to be done to estimate nonlinearities

Summary & Plans

KLauS in new technology

Two protoypes submitted and tested

ADC: working in 12b mode

Front-end: Most blocks implemented & characterized

- 2V SiPM bias tuning (last meeting)
- Good linearity
- Visible single pixel spectra for 10um SiPMs
- \rightarrow Encouraging results to go for multi-channel ASIC

Next version planned

≤12 channels:

Front-end & ADC + Digital, combined simulation in place TDC development will be staged:

coarse counter (~50ns binning, 16b) in next version

Submission: March '16

Thank you!

Backup

[Layout of the 1.5x1.5mm miniASIC]

AHCAL meeting 12/2015

HG stage: Linearity (Fine scan)

Charge injection measurements

Cd=33pF

Measure Peak voltage – Pedestal Scope (8b, some nonlinearity from this)

→ Linear range @ max INL = 1%:
2.8pC

Nonlinearities when reaching VCC18 Other nonlinearities seem to come from scope

LG stage: Linearity (Fine scan)

Charge injection measurements

Measure Peak voltage – Pedestal Scope (8b, some nonlinearity from this)

 \rightarrow Linear range @ max INL = 1%:

Expected from simulations: > 140pC

State of implementation

