

19th ATF2 Project Meeting 13-15 January 2016 LAL, Paris

19th TB/SGC Session Beam orbit stabilization

Douglas BETT

Cédric CHARRONDIÈRE, Andrea JEREMIE, Marcin PATECKI, Juergen PFINGSTNER, Yves RENIER, Rogelio TOMÁS GARCÍA Kiyoshi KUBO, Shigeru KURODA, Takeshi NAITO, Toshiyuki OKUGI, Toshiaki TAUCHI, Nobuhiro TERUNUMA

Introduction

- Ground motion, vibrations and drifts create beam oscillations that harm the beam quality and stability
- High beam quality requirements for a future linear collider make mitigation essential

Mitigation schemes

- Orbit feedback can correct frequencies much smaller than the machine repetition rate
- Intra-train feedback essential at the IP but global orbit distortions remain uncorrected
- Active and passive stabilization too bulky and expensive for any but the most critical components
- Novel idea: ground motion feed-forward

Ground motion feed-forward

 Similar concept to orbit feedback but uses seismometers instead of BPMs to drive the correction

ADVANTAGES

Cheaper than active stabilization systems.

Correct frequencies out of limits for orbit feedback systems.

Setup at ATF2

- 14 Güralp Systems CMG-6T seismometers
- National Instruments data acquisition hardware
- Synchronization signal for BPM and ground motion data sets

Experimental results at ATF2

Two stage program to demonstrate ground motion feed-forward:

- 1. Demonstrate that beam position can be predicted from seismometer data
- 2. Demonstrate that beam jitter can be reduced using a correction based on seismometer data (see talk in session FUTURE PLANS)

Ground motion data Sensors on quads Data set: ATF2_2015-05-22_14h30m54s.716.mat 1e-13 1e-13 Spectral density (m^2) 1e-14 1e-14 Spectral density (m^2) 1e-15 1e-15 1e-16 1e-16 1e-17└─ 9 1e-17 10.5 9.5 11.5 10 11 12 Frequency (Hz) 1e-18 1e-13 QF1X (Te-14 (Te-15) (Te-15) (Te-16) (Te-16) 1e-19 QD2X QF3X 1e-20 2 bectral S bectral N bectral QF4X 1e-21 10 100 1e-19└── 23.5 Frequency (Hz) 24 24.5 25 25.5 26 26.5 Frequency (Hz)

Douglas BETT

Data set: ATF2_2015-05-22_11h38m40s.278.mat

Douglas BETT

Data set: ATF2_2015-05-22_11h38m40s.278.mat

Douglas BETT

Data set: ATF2_2015-05-22_14h30m54s.716.mat

Douglas BETT

Data set: ATF2_2015-05-22_14h30m54s.716.mat

Douglas BETT

Predict beam position

- Construct the linear combination of data from the different seismometers that best matches the position observed at MSD4FF
- The correlation between this fit and the actual BPM data determines the performance of the feed-forward system:

$$\frac{\sigma_f}{\sigma_i} = \sqrt{1 - \rho^2}$$

- σ_i jitter before correction
- σ_f jitter after correction
- ρ correlation between fit and measurement

Fit to beam position

Data set: ATF2_2015-05-22_14h15m19s.502.mat

Douglas BETT

Fit to beam position

Data set: ATF2_2015-05-22_14h15m19s.502.mat

Douglas BETT

Expected performance

- Using a 0.2 Hz high-pass filter doubles the correlation from 0.29 to 0.58
- This increases the expected reduction in jitter from ~5% to ~20%

 20% at the typical jitter levels of the FF BPMs corresponds to ~15 µm and thus should be easily measurable

Summary

- Ground motion feed-forward designed to suppress the effect of quadrupole vibrations at frequencies higher than those covered by orbit feedbacks
- Additional beam-based alignment methods can be envisaged to improve orbit stability (e.g. DFS removes energy dependence from orbit, WFS removes charge dependence)