IP feedback based on the triplet of IPBPMs

T. Tauchi 19th ATF project meeting, LAL, Orsay, France, 13-15 January 2016

Goal - 2

B. Control of the beam position B1) Demonstration of beam orbit stabilization with nano-meter precision at IP. (The beam jitter at FFTB/SLAC was about 40nm.) B2) Establishment of beam jitter controlling technique at nano-meter level with ILC-like beam (2 or 3 bunches)

Requirements

Goal	ATF-EXT	ATF2
1	Jitter < 30% of σ_y $\gamma \varepsilon_y = (4.5 \rightarrow 3) \times 10^{-8} \text{m}$	BSM (laser in higher mode) BPMs with 100nm res. at Qs Power supplies of < 10 ⁻⁵ Rigid support of Final Q ,BSM
I	Jitter < 5% of σ_y (2nm jitter at FP)	BPM with < 2nm res. at FP Intra-bunch feedback for ILC style beam

Extraction Kicker Pulse

First Pulse of SLAC Dual Kicker at ATF, 9/30/2005

Resolution :IPBPM (2nm)
Starting point of the design work

Y.Honda, 1st ATF2 project meeting

- Challenges
 - ultimate y-direction resolution
 - I nm signal > thermal/amplifier noise
 - under angle jitter condition
 - I00 urad angle signal < I nm position signal
 - under large x jitter
- Basic idea
 - thin gap to be insensitive to the beam angle
 - small aperture to keep the sensitivity
- Additional idea
 - separation of x and y signal
 - higher coupling to have stronger signal

Position to angle sensitivity

 0.0032 m/rad in close agreement to Tauchi-san's summary of results:

Estimation (IPBPM)	frequency	$k = \omega/c$	effective cavity length	angle/position					
	Hz		m	ratio: θ / δ	$\theta = 100$ urad	if $\theta = \sqrt{\varepsilon} / \beta$ = $\sigma'(IP)$			
	effec	tive Length=	0.0165	m/rad	$\sigma'(IP)=$	3.464.E-04			
Nakamura	6.426.E+09	1.347.E+02	0.0165	3.08.E-03	3.08.E-07	1.07.E-06			
Honda	6.426.E+09	1.347.E+02	0.0165	3.08.E-03	3.08.E-07	1.07.E-06			
Mafia calculation				2.60.E-03	2.60.E-07				
Alexy	6.426.E+09	1.347.E+02	0.0165	3.34.E-03	3.34.E-07	1.16.E-06			
Alexy:numerical int.									
Kubo	6.426.E+09	1.347.E+02	0.0165	3.34.E-03	3.34.E-07	1.16.E-06			

N. Blaskovic

ATF IP BPM Meeting 26 March 2014

2. Wakefield

y' = 1.25 ur / mm for $I = 1 \times 10^{10} / \text{bunch}$, where $y' = A \Delta y$

IPBPM	S _{IPBPM} : distance from IP(C), cm	vertical beam size, um	y'nr for <mark>30% y jitter</mark>	y'x S _{IPBPM} at IP (C) nm
В	15.8	_γ 54.9	20.5	3.3
A	23.9	82.9	31	7.4
IPBPM	SIPBPM : distance from IP(B), cm	vertical beam size, um	y'nr for <mark>30% y jitter</mark>	y' x Sipbpm at IP (B) nm
IPBPM A	S _{IPBPM} : distance from IP(B), cm 7.92	vertical beam size, um 27.4	y'nr for <mark>30% y jitter</mark> 10.2	y' x S _{IPBPM} at IP (B) nm 0.8

y' = 1.13 ur / mm for I= 1 x 10^{10} /bunch by Karl's calculation (Mafia, KNU-IPBPM) in next slide

distance from IP (m)

(m) Q V \times assuming 0.15 position jitters

Dynamic range and resolution of IPBPM-B_Y

Nominal intensity=	1.00.E+10							
no of ports=	2			-				
sensivity V/nm=	3.10.E-06	Gain	53.3	dB		sensitivity KE	KIPBPM V/nm	2.56.E-06
Input :		hybrid_coupler	3.0	dB				
Noise (dBm)=	-95	SMA cable	7.0	dB				
Noise (V)=	3.976E-06	BNC cable	6.0	dB				
		unknown	6.0	dB	N			
		Effective Gain	31.3	dB				
Output :		DC-AMP	0	dB				
Max. (V)	0.60				dBm	V	dBm	V
Max. (dBm)=	8.57				-4.4	0.134	-4	0.1411

beam intensity= 1.00.E+10

			noise level			ADC "res	olution"	maxin	num/dynamic	"total	ampli-	
beam intensity	input attenuator (dB)	Effective Gain	power(dBm)	pulse height	position(nm)	bits/one side	nm/ADC	power(dBm)	pulse height	position(um)	gain"	tude/V
1.00.E+10	0	31.3	-95	3.976E-06	1.3	12	1.29	-22.7	1.634E-02	5.3	31.3	0.6
1.00.E+10	10	31.3	-95	3.976E-06	4.1	12	4.1	-22.7	5.166E-02	16.7	21.3	0.6
1.00.E+10	20	31.3	-95	3.976E-06	12.8	12	12.9	-22.7	1.634E-01	52.7	11.3	0.6
1.00.E+10	30	31.3	-95	3.976E-06	40.6	12	40.7	-22.7	5.166E-01	166.6	1.3	0.6
1.00.E+10	40	31.3	-95	3.976E-06	128.3	12	128.7	-22.7	1.634E+00	527.0	-8.7	0.6

beam intensity= 5.00.E+09

			noise level			ADC "res	ADC "resolution" maximum/dynamic ra				"total	ampli-	
beam intensity	input attenuator (dB)	Gain	power(dBm)	pulse height	position(nm)	bits/one side	nm/ADC	power(dBm)	pulse height	position(um)	gain"	tude/V	1
5.00.E+09	0	31.3	-95	3.976E-06	2.6	12	2.57	-22.7	3.267E-02	10.5	31.3	0.6	1
5.00.E+09		31.3	-95	3.976E-06	8.1	> 12	8.1	-22.7	1.033E-01	33.3	21.3	0.6	\mathbf{D}
5.00.E+09	20	31.3	-95	3.976E-06	25.7	12	25.7	-22.7	3.267E-01	105.4	11.3	0.6	
5.00.E+09	30	31.3	-95	3.976E-06	81.1	12	81.4	-22.7	1.033E+00	333.3	1.3	0.6	
5.00.E+09	40	31.3	-95	3.976E-06	256.5	12	257.3	-22.7	3.267E+00	1053.9	-8.7	0.6	

beam intensity= 1.00.E+09

				noise level		ADC "res	olution"	maxin	num/dynamic	"total	ampli-	
beam intensity	input attenuator (dB)	Gain	power(dBm)	pulse height	position(nm)	bits/one side	nm/ADC	power(dBm)	pulse height	position(um)	gain"	tude/V
1.00.E+09	0	31.3	-95	3.976E-06	12.8	12	12.9	-22.7	1.634E-01	52.7	31.3	0.6
1.00.E+09	10	31.3	-95	3.976E-06	40.6	12	40.7	-22.7	5.166E-01	166.6	21.3	0.6
1.00.E+09	20	31.3	-95	3.976E-06	128.3	12	128.7	-22.7	1.634E+00	527.0	11.3	0.6
1.00.E+09	30	31.3	-95	3.976E-06	405.6	12	406.8	-22.7	5.166E+00	1666.4	1.3	0.6
1.00.E+09	40	31.3	-95	3.976E-06	1282.7	12	1286.6	-22.7	1.634E+01	5269.7	-8.7	0.6

3. Layout

IPBPM Triplet with movers in the IP chamber

Configuration of IP feedback based on the triplet of IPBPMs

IP at IPBPM-B $\sigma_y=27.4$, 0.037, 54.9 um at IPBPM-A, -B and -C, respectively (57.4dB, 0dB, 63.4dB) IPBPM-A / IPBPM-C for the feedback input IPBPM-B for a witness of jitter at IP (focal point)

Assuming the jitters scaled with the beam sizes, i.e. 1nm stabilization at IP Required position resolutions = 0.7, 0.001 and 1.5 um at IPBPM-A, -B and -C, respectively

For IPBPM (KEK type) Waveform – heterodyne (multi bunch)

Two bunch waveform (187.6 ns bunch spacing) 2x3x8000 $\begin{array}{c} 4000 \\ 3000 \\ 2000 \\ 1000 \end{array}$ 3000 3000 6000 2000 2000 4000 1000 2000 1000 $-2000 \\ -4000 \\ -6000$ -1000 $-1000 \\ -2000 \\ -3000$ 1000-2000-2000-3000-8000L -300 -4000 1004000 40 60 80 20 60 80 20 40 20 40 40 60 80 100 2y3y1y $2000 \\ 1500$ 600 4000 3000 400 $1000 \\ 500$ 2000 1000 200 $-500 \\ -1000$ 1000 -2002000 -400-15003000 -200060 80 100 600 40 60 80 100 4000 0 20 40 20 20 20 40 40 60 80 100

Reference y

1000

500

-500

-1000

 $\frac{1}{100} \frac{1}{200} \frac{1}{300} \frac{1}{400} \frac{1}{500} \frac{1}{600} \frac{1}{100} \frac{1}{200} \frac{1}{300} \frac{1}{400} \frac{1}{500} \frac{1}{600}$

Three bunch waveform (150 ns bunch spacing)

We can see clearly the bunch separation. But, how can we use reference information for charge normalization??

Reference x

 $200 \\ 150 \\ 100 \\ 50$

 $-50 \\ -100$

-150

-200

kimvoungim@gmail.com

14

Younglm Kim, 13th ATF2 Project meeting, 11-13 January, 2012

RF properties of the wave guide in the IPBPMs

с	m/sec	30000000									
π		3.141592654									
wave guide		present (compac	ct) low Q design	wrong	design	high Q c	old model	high Q ł	not model	compact high	Q cold model
a	m	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
b	m	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
L	m	0.042	0.045	0.038	0.041	0.05	0.05	0.057	0.06	0.042	0.045
m		0	0	0	0	0	0	0	0	0	0
n		1	1	1	1	1	1	1	1	1	1
1		1	1	1	1	1	1	1	1	1	1
		Y	Х	Y	Х	Y	Х	Y	Х	Y	Х
cavity dipole freq.		6.426.E+09	5.712.E+09	6.426.E+09	5.712.E+09	6.426.E+09	5.712.E+09	6.426.E+09	5.712.E+09	6.426.E+09	5.712.E+09
$\Delta f(typical)$		1.300.E+07	1.890.E+07	5.800.E+06	2.700.E+06	6.000.E+06	6.400.E+06	5.800.E+06	2.700.E+06	4.000.E+06	4.860.E+06
Q_L(typical)		494	302	1108	2116	1071	893	1108	2116	1607	1175
β (typical)		0.73	1.50			0.64	1.33	2.20	1.28	1.50	2.35
Q_ext(typical)		1171	504			2744	1564	1612	3768	2678	1675
Q_ext(design)		856	841			2442	3901	1590	3382	1669	3394
monopole frequency	f_011	6.145.E+09	6.009.E+09	6.370.E+09	6.196.E+09	5.831.E+09	5.831.E+09	5.650.E+09	5.590.E+09	6.145.E+09	6.009.E+09
diff.freq.		2.815.E+08	-2.973.E+08	5.562.E+07	-4.836.E+08	5.950.E+08	-1.190.E+08	7.758.E+08	1.218.E+08	2.815.E+08	-2.973.E+08
diff.feq./ Δf		21.7	-15.7	9.6	-179.1	99.2	-18.6	133.8	45.1	70.4	-61.2
				deformed Q			ringing seen	8.7nm p	oublished		
test condition		in the IP	chamber	simulat	ion only	tested at I	LINAC-end	tested at	the EXT	tested in the	IP chamber

P.Burrows, talk at LCWS2015

IPFB results

Bunch 1: not corrected, jitter ~ 400nm

Bunch 2: corrected, jitter ~ 67nm

Corrected jitter 67nm

 \rightarrow resolution 47nm

The RF test results by Siwon

The measured RF test data shown in Table. The Q factor was lower than design values. Maybe, the reason comes from IPBPM assemble method by volt make a RF field leakage between two surfaces of aluminum body.

However, the expected external output voltage was not bad compare with HFSS simulation results. The average output voltages are 3.11uV/nm and 5.14uV/nm for Y-port and X-port, respectively.

The average resonant frequency are 6.4208 GHz and 5.7117GHz for Y-port and X-port, respectively. Also these average frequencies will be used for resonant frequencies of reference cavity BPM.

$Q_L \equiv \frac{\omega U}{P}, \ Q_0 \equiv \frac{\omega U}{P_{wall}}, \ Q_{ext} \equiv \frac{\omega U}{P_{out}}$						$P = P_w$	all + P	P_{out}, β	$\equiv \frac{P_{ou}}{P_{wa}}$	$\frac{t}{ll} = \frac{\zeta}{Q}$	$\frac{Q_0}{ext}$ ζ	$Q_0 = (1)$	$(1+\beta)Q_{1}$
	X(mm)	Y(mm)	f0 (GHz)	Δf(MHz)	Q_L	Decay time	S21(dB)	S21	β	Q_0	Qext	R/Q	V_out (uV/2nm)
Design Y	48.55	60.75	6.4345	9.100	707.1	17.49	-1.656	0.826	4.761	4073.5	855.6	667481	7.145
Design X	48.55	60.75	5.7237	8.200	698.0	19.41	-1.623	0.830	4.867	4094.9	841.4	765973	7.751
IPA-Y	48.55	60.75	6.4225	13.144	488.6	12.11	-7.460	0.424	0.735	847.7	1153.3	668974	6.162
IPB-Y	48.55	60.75	6.420	14.148	453.8	11.25	-7.545	0.420	0.723	781.7	1081.6	669286	6.365
IPC-Y	48.55	60.75	6.420	23.596	272.1	6.745	-12.68	0.232	0.303	354.3	1171.3	669286	6.117
IPA-X	48.55	60.75	5.712	18.248	313.0	8.722	-3.620	0.659	1.934	918.4	474.8	767786	10.328
IPB-X	48.55	60.75	5.712	19.454	293.6	8.181	-5.370	0.539	1.169	636.7	544.8	767786	9.642
IPC-X	48.55	60.75	5.711	32.318	176.7	4.925	-7.680	0.413	0.704	301.0	427.8	767942	10.882

$$Q_L = \frac{f}{\Delta f}, \ \beta = \frac{1 - S_{11}}{S_{11}} = \frac{S_{21}}{1 - S_{21}}$$

 $\tau = Q_L/\omega = Q_L/2\pi f = 10$ ns with Q=400

Present status

BPM resolution : 27nm at 0.3 x 10^10 beam intensity

or

IP stabilization at 67nm (\rightarrow resolution of 47nm)

What are sources of the resolution limit?

- electronics noise
- low beam intensity, e.g. poor calibration
- calibration, e.g. IQ tuning
- static signals

only seen at the low Q IPBPMs ?

could be "filtered out" by the narrow band C-band pass filter

may be generated in the waveguide

Measures

- recovery of Q at IPBPM-C by re-fabrication and indium shielding to see a correlation between the Q and the static signals
- finer adjustment of IQ angle or detailed calibration in the nanometer range

Future studies

(1) IP at IPBPM-B feedback with IPBPM-B, monitor at the nanometer level by IPBPM-B

(2) IP at IPBPM-B feedback with IPBPM-A and --C, monitor at the nanometer level by IPBPM-B

(3) Nominal IP feedback with IPBPM-A, -B and -C, beam size measurements by Shiitake monitor

We need a full usage of I and Q signals the measured sensitivity =3mm/rad : 1 ns resolution corresponds to 1/3 urad