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Introduction

Present optimisation studies

Detector-component optimisation in ILD (post DBD):
Mainly has been about calorimeters.
Aimed at cost-reduction.
Only considers JER as metric - mainly for highest energy jets.
Studies on:

Sensitive detector technology
Number of layers
Radius and/or length

This will have implications on the tracker!
What is the prize to pay in tracker - and
ultimately physics - performance !?

For more details: https://agenda.linearcollider.org/event/
6557/session/10/contribution/22/material/slides/0.pdf
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Effects of Tracking geometry

Effects of Tracking geometry

Reminder:
∆(1/pT ) ∝L−2.5 (2 purely geometric + ( ≥) 0.5 because of less
points in TPC).

But only linear in σpoint and B-field

Please note: Stored energy in B-field ∝B2V , so at equal stored
energy, a smaller detector can have a higher field.

Also: σ2
point ,TPC = σ2

0(sinφ) +
C2

d (B)

Neff (sin θ)Z , C2
d (B) ∝ 1/(1 + (µB)2)⇒

complicated relation, but gets better with shorter drift-length and
higher B.
Also: Higher B-field⇒ possible to have smaller
beam-pipe/vertex-detector⇒ better IP-resolution.
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Effects of Tracking geometry

The tool for the study: SGV fast simulation

SGV is a machine to calculate tracking covariance matrices (and
simulate events accordingly, if requested).
Example of detail: TPC point-resolution vs. Z and B in SGV and DBD:

Points:
Prototype
measurements
(from DBD/DBD
SVN)
Lines: Formula
used in SGV.
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Effects of Tracking geometry

Vertex-detector size and B
If the B field goes from
... 3.5 T ... to 5 T,
the cone of bs pairs get
squeezed.
The “cone” is a parabola⇒
The radius of the edge of the
“cone” ∝ 1/

√
B at a given Z.

However:
The particles directly hitting
the VTX are not from the
“cone”, and have no PT − θ
correlation.
The back-scatters from the
BCal that hits the VTX are
not produced at a given Z if
the detector shrinks.
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Effects of Tracking geometry

Vertex-detector size and B
If the B field goes from
... 3.5 T ... to 5 T,
the cone of bs pairs get
squeezed.
The “cone” is a parabola⇒
The radius of the edge of the
“cone” ∝ 1/

√
B at a given Z.

However:
The particles directly hitting
the VTX are not from the
“cone”, and have no PT − θ
correlation.
The back-scatters from the
BCal that hits the VTX are
not produced at a given Z if
the detector shrinks.

⇒ Reduce RVTX−inner in proportion to B⇒ better σip.
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Geometry used

Geometries used

I studied five different ways to change the ILD baseline geometry. For
each of these I did modifications in 5 steps:

1 Keep baseline aspect
ratio.

2 Keep baseline radius.
3 Keep aspect ratio = 1
4 Keep baseline length.
5 Keep length =

baseline-40 cm.

(All showing the largest modification using SGV:s detector description
visualiser)
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Geometry used

Other options

Apart from the pure modifications of the geometry, I considered
1 Only Outer extent of the TPC modified. Everything outside was

also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels
unchanged.

2 Also modify B, keeping B2V constant (V=volume of solenoid).
3 Keep B fixed, but modify TPC inner radius (and hence the outer

layer of the SIT and the outer radius of the FTD discs.)
4 Both 2 and 3.
5 In addition to 4, also scale beam-pipe and VTX-inner with B.
6 Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from
3.5T to 4T (as the magnet is designed for 4T)
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Apart from the pure modifications of the geometry, I considered
1 Only Outer extent of the TPC modified. Everything outside was

also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels
unchanged.

2 Also modify B, keeping B2V constant (V=volume of solenoid).
3 Keep B fixed, but modify TPC inner radius (and hence the outer

layer of the SIT and the outer radius of the FTD discs.)
4 Both 2 and 3.
5 In addition to 4, also scale beam-pipe and VTX-inner with B.
6 Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from
3.5T to 4T (as the magnet is designed for 4T)

In Total:
2 × 5 × 5 × 6 = 300 cases !
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Particle level: helix parameters

Effects of Tracking geometry on helix parameters

Check ∆(1/p) and ∆(ipRφ) at different p and cos θ
The point of the exercise is to reduce the size (=area) of the
calorimeters (in particular ECal). Here I show the performance as a
function of AECal /AECal,TDR

Circles/triangles: fixed
aspect-ratio.
Squares: fixed R.
Stars/inv. triangles:
fixed Z.
∆(1/p), barrel.
∆(1/p), endcap.
∆(ipRφ), barrel.
∆(ipRφ), endcap.

Filled: Only modify geometry; Open: also do other changes.Mikael Berggren (DESY) Detector benchmarks ILD SW&Opt 9 / 22
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Physics Higgs recoil-mass @ 350 GeV

Higgs recoil-mass @ 350 GeV: mesurables

Look at e+e− →ZH,
Z → µ+µ−, H → X .
Signal only, perfect µ
finding, SGV.
Recoil-mass =√

(EZ − ECMS)2 − p̄2
Z ,

where
EZ = Eµ+ + Eµ− ,p̄Z =
p̄µ+ + p̄µ− ,
ECMS =nominal=350.
So,it’s all about
measuring the µ:s !
Note: E range 20 to
150, θ in barrel.
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Physics Higgs recoil-mass @ 350 GeV

Higgs recoil-mass @ 350 GeV: The recoil mass

ECMS 6=nominal, due to
beam spectrum.
Assume ECMS known
⇒ see effect of
detector alone.
Or: Assume µ:s
perfectly measured⇒
see effect of
beam-spectrum alone.
Fold the two: the
observable distribution.
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Physics Higgs recoil-mass @ 350 GeV

Higgs recoil-mass @ 350 GeV: The good, the bad, the
ugly

This shows observable
recoil-mass for the
nominal ILD (black), the
worst case (red) and
the best case (blue)
... and this shows the
case if ECMS would be
known, ie. the pure
detector effect.
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Physics Higgs recoil-mass @ 350 GeV

Higgs recoil-mass @ 350 GeV: fits with different
options

To substantiate: Fit the recoil-mass (Gaussian from 120 to 126.5 GeV
in the observable case, free Gaussian in the ECMS-known case)

σM−recoil for all options
vs. TPC radius.
σM−recoil for a
representative set of
options. Baseline
B=3.5(4) T for filled
(open) circles.
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Physics b-tagging

Physics: b-tagging

e+e− →Zh→ µµh is fine but ..
Mostly sensitive to barell tracks at high p.
Doesn’t care about impact-parameters.

So need something where ...
Performance at low angles/momenta matters
Impact-parameters matters.

⇒ b-tagging for e+e− →Z → qq̄ @ 500
GeV, no ISR

Use simple method based on
impact-parameters and primary
vertex probability only.
⇒ Optimise for best S/

√
S + B for

each detector-geometry (on-the-fly)

Mikael Berggren (DESY) Detector benchmarks ILD SW&Opt 14 / 22



Physics b-tagging

Physics: b-tagging

e+e− →Zh→ µµh is fine but ..
Mostly sensitive to barell tracks at high p.
Doesn’t care about impact-parameters.

So need something where ...
Performance at low angles/momenta matters
Impact-parameters matters.

⇒ b-tagging for e+e− →Z → qq̄ @ 500
GeV, no ISR

Use simple method based on
impact-parameters and primary
vertex probability only.
⇒ Optimise for best S/

√
S + B for

each detector-geometry (on-the-fly)

Mikael Berggren (DESY) Detector benchmarks ILD SW&Opt 14 / 22



Physics b-tagging

Physics: b-tagging

e+e− →Zh→ µµh is fine but ..
Mostly sensitive to barell tracks at high p.
Doesn’t care about impact-parameters.

So need something where ...
Performance at low angles/momenta matters
Impact-parameters matters.

⇒ b-tagging for e+e− →Z → qq̄ @ 500
GeV, no ISR

Use simple method based on
impact-parameters and primary
vertex probability only.
⇒ Optimise for best S/

√
S + B for

each detector-geometry (on-the-fly)

Mikael Berggren (DESY) Detector benchmarks ILD SW&Opt 14 / 22



Physics b-tagging

Physics: b-tagging

S/
√

S + B depends on radius
of inner layer of the VD.
Which in turn depends on the
possibility to increase the
B-field for a smaller detector.
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Metrics

Metrics

Performance:
Use two metrics:

Get score (1-300) in each of
the properties (39 of them)
for each geometry.
Calculate weighted sum of
the relative difference wrt
DBD of all properties.

Higher for physics (Higgs
mass, b-tagging), zero for
ip’s at 10 degrees, lower
for 250 GeV
track-properties ....

Only changing size ...
Mitigation, except radius of
VD...
... and including it.
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Metrics

Metrics

Savings
Take cost-profile in DBD.
For calorimeters: 90 % is
sensors (∝ Area), 10 % is
absorber (∝ Volume)
For SET: 100 % sensors (∝
Area)
For TPC: Assume 100 % is
area of end-plates.
For Yoke: Scales with Volume
- volume restricted by keeping
the same flux.
Master formula vs TPC radius.
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For Yoke: Scales with Volume
- volume restricted by keeping
the same flux.
Master formula vs TPC radius.

Master formula:
AreaRatioTPC × 0.08 + AreaRatioEcal × 0.3 × 0.9 + VolumeRatioEcal ×
0.3 × 0.1 + AreaRatioHcal × 0.1 × 0.9 + VolumeRatioHcal × 0.1 × 0.1 +
AreaRatioSET × 0.05 + VolumeRatioYoke × 0.25
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Results & Recommendations

Putting it together

All in a few 4D-plots
savings vs. size - performance
colour-coded (blue is good -
red is bad)
Cut out worst out worst
performers ...
... and then ...
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Results & Recommendations

Putting it together

... project on size
Only at least 10 % savings,
best ∼ 5 performances in each
of the 6 groups of mitigation
strategies.

(⇒ different performance cut
for different strategies)

For ∼ all strategies, the same
sizes remain.
... except the smallest option,
which needs all tricks to be a
player.
performance and savings
iso-curves.
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(⇒ different performance cut
for different strategies)

For ∼ all strategies, the same
sizes remain.
... except the smallest option,
which needs all tricks to be a
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the right edge !
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Results & Recommendations

Recommendations

For all assumptions on how to mitigate the effects of a smaller
detector the three cases 160-230, 160-200 and 140-230 covers
the region with good cost/performance, and spans the interesting
region well.
With full mitigation, 2 of the points performs better than the DBD
detector, but not as well as the DBD detector with 4 T.
To see if full mitigation is possible, paramount to study:

Can the DBD solenoid deliver 4T ?
And can a smaller solenoid deliver even more, if the stored energy
is kept constant ?
Can the the VD inner radius be reduced with higher B field, and
how much? (NB: SiD says Yes.)
This point needs to be addressed in simulation of pairs with not
only different B-field but also modified forward region. Anti-DID field
needed.
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Results & Recommendations

Recommendations

The suggested points in detail, with performance under different
schemes:

option ROuter,TPC Zmax,TPC RInner,TPC RVD−inner B Savings Performance
option (= 1 for DBD) (=2 for DBD)

113 160. 230.25 32.9 1.6 3.5 0.886 2.29
113 1.5206 3.6827 0.8898 2.11
113 1.6 4. 0.8965 2.35
113 1.3305 4.2088 0.9008 1.62
23 160. 202.62 28.952 1.6 3.5 0.8469 2.70
23 1.4672 3.8167 0.8528 2.25
23 1.6 4. 0.8562 2.31
23 1.2838 4.362 0.8629 1.87
115 140. 230.25 32.9 1.6 3.5 0.7882 2.46
115 1.4477 3.8682 0.7957 2.10
115 1.6 4. 0.7984 2.30
115 1.2667 4.4208 0.8069 2.10
DBD 181.8 230.25 32.9 1.6 4 1.0105 1.79
DBD 1.4 4 1.0105 1.67
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The suggested points in detail, with performance under different
schemes:

option ROuter,TPC Zmax,TPC RInner,TPC RVD−inner B Savings Performance
option (= 1 for DBD) (=2 for DBD)

113 160. 230.25 32.9 1.6 3.5 0.886 2.29
113 1.5206 3.6827 0.8898 2.11
113 1.6 4. 0.8965 2.35
113 1.3305 4.2088 0.9008 1.62
23 160. 202.62 28.952 1.6 3.5 0.8469 2.70
23 1.4672 3.8167 0.8528 2.25
23 1.6 4. 0.8562 2.31
23 1.2838 4.362 0.8629 1.87
115 140. 230.25 32.9 1.6 3.5 0.7882 2.46
115 1.4477 3.8682 0.7957 2.10
115 1.6 4. 0.7984 2.30
115 1.2667 4.4208 0.8069 2.10
DBD 181.8 230.25 32.9 1.6 4 1.0105 1.79
DBD 1.4 4 1.0105 1.67

As usual:
There’s No free lunch !
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Conclusions

Conclusions
A large number of possible ways to reduce the size of the ILD
tracking system were studied.
A number of auxiliary changes that a reduced size would allow for
were also studied: Increased B-field, changes of the inner radius
of the TPC and/or the vertex detector.
The errors of the basic helix parameters were evaluated for all of
these scanning in momentum at a few fixed θ angles or in θ at a
few fixed momenta.
In addition, the precision on MH from the recoil-mass method and
the b-tagging performance was evaluated with with SGV.
The combined performance was compared with the potential
savings.
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The errors of the basic helix parameters were evaluated for all of
these scanning in momentum at a few fixed θ angles or in θ at a
few fixed momenta.
In addition, the precision on MH from the recoil-mass method and
the b-tagging performance was evaluated with with SGV.
The combined performance was compared with the potential
savings.

Recommendations
Three best points (TPC radius/length): 160/230, 160/200,
140/230
With mitigation sometimes better performance than DBD
detector can be achieved.
However: The DBD detector geometry always performs
better.
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