

February 24th., 2016

DD4hep

Detector Description Status

DD4hep motivation, goals, components and usage

M. Frank⁽¹⁾, F. Gaede⁽²⁾, N. Nikiforou⁽¹⁾, M. Petric⁽¹⁾, A. Sailer⁽¹⁾

(1) CERN (2) DESY

Motivation and Goal

- Develop a detector description (*)
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - 'Anticipate the unforeseen'
 - Consistent description, single source of information, which supports
 - simulation, reconstruction, analysis
 - Full description, including
 - Geometry, readout, alignment, calibration etc.

(*) DD4hep is a sub-package of AIDA2020 WP3: http://aidasoft.web.cern.ch

Motivation and Goal

- Minimize and avoid new developments
- Rather: attempt to coherently combine in a user friendly manner what belongs together:
 - Detector Geometry
 - Detector Alignment and Conditions
 - Simulation using Geant4
- Let's be driven by laziness ...
 - Get most out of it with minimal efforts
 - In particular when developing new detector concepts

What is Detector Description ?

- Description of a detector as a tree-like hierarchy of 'detector elements'
 - Sub-detectors or parts of subdetectors
- Detector Element describes
 - Geometry
 - Environmental conditions
 - Properties required to process event data
 - Optionally: experiment, sub-detector or activity specific data

DD4Hep - The Big Picture

Note:

DD4hep population is plugin based => Only one, not the exclusive way.

Saga in 5 Episodes: Sub-packages

- DD4hep basics/core
 Basically stable
- DDG4 Simulation using Geant4
 Towards end of validation
- DDRec Reconstruction supp.
 Driven by FG, NN, AS, ...
- DDAlign Alignment support (*)
- DDCond Detector conditions (*)

(*) In work:

- Hope to get LHCb in the boat
- Need running experiment to
 - achieve a realistic implementation

DD4hep Core

- Handles the functionality of detector elements
- Basically stable
 - Bug fixes, enhancements
- OpenGL displays come for free (ROOT)
 - Good graphics is indispensable to debug a geometry
- Objects are fully reflective
 - C++ dictionaries defined
 - Cross-language development & interactivity: Cint, Python

Simulation: DDG4

- Simulation = Geometry + Detector response + Physics
- Concept: Formalization of Geant4
 - Automatic conversion from ROOT to Geant4
 - Instantiate objects palette: Physics list, -constructors, sens. detectors
 - Start simulating

Feb 24th 2015

- No extra (C++) user code necessary
 - But not inhibited e.g. sophisticated sensitive detectors
 - Uses heavily plugin mechanisms
- Flexible configuration with python or Cint [, XML]

• Support for Geant4 multi-threading (event - parallelism)

DDAlign: Detector Alignment

- Fundamental functionality to interpret event data in the real and imperfect world
 - Must handle imperfections
 - Geometry => (Mis)Alignment
 - Anomalous conditions

Feb 24th 2015

- Pressures, temperatures
- => Gains, refractive indexes
- => Contractions, expansions
- Basic functionality present
 - But no connection to persistency present (yet)
 - Needs conditions to apply alignments as a timed sequence

DDAlign: Detector Alignment

• Fu Please Note:

Feb 24th 2015

th

DDAlign does not provide *algorithms* to determine alignment constants and never will ^(*) in

?*P-1

Т

DDAlign supports hosting the results of the algorithms and to apply alignment constants to the geometry

(*) Alignment procedures investigated by another sub-project of WP3 (Chris Parkes et al.)

ILD Software Workshop Ha

DDCond: Conditions Data

- Time dependent data necessary to process the detector response [of a particle collisions]
- Conditions data support means to "Provide access to a consistent set of values according to a given event"
 - Fuzzy definition of a "consistent set" typically referred to as "interval of validity"
 - May be time interval, run number, named period, ...
- Data typically stored in a database
- Currently under investigation

Feb 24th 2015

Multi-Threading in DDAlign & DDCond

- Mandatory: Nowadays can't sell anything without
- Has consequences in the usage
 - More sociological than technical problem Need to agree on use cases and API
- Example:
 - TGeo applies alignment to real geometry
 - Nice: can simulate misaligned geometries
 - But: How do you deal with reconstruction in the presence of run-changes and multiple concurrent events, with multiple versions of conditions data ?
 - Either: geometry is constant (and drain event loop) bef ore application of new constants
 - Or: apply misalignments on the spot during hit reconstruction => Conditions are accessed using event's IOV

Multi-Threading in DDAlign & DDCond

- LC community has no strong use case yet
 - Early experiment phase
- Need running experiment
 - LHCb plans to investigate the use of DD4hep for the upgrade (LHC LS2)
 - Manpower got allocated this year
 - Hope to implement missing elements according to viable usage patterns

Other Upcoming Issues

- C++11 and ROOT 6 (and dropping ROOT 5)
 - No question IF, only WHEN
- DDG4: Support fast and parametrized simulation
 - Speed-up by avoiding full Geant4 machinery
- DDG4: Revisit integration in experiment frameworks
 - Depends on future requirements of LHCb / FCC (Gaudi) and ILC (Marlin)

Toolkit Users

Users are mandatory for feedback to avoid purely academic developments in thin air... DD4hep would not where it is without its users DD4hep DDG4

- ILC F. Gaede et al.
- CLICdp A. Sailer et al.
- FCC-eh P. Kostka et al.
- FCC-hh A. Salzburger et al.
- FCC-ee Interest was expressed
- SiD Decision to use DD4hep taken at LCWS 2015
- CALICE Started

Feb 24th 2015

• LHCb Manpower allocated this year for upgrade

DD4hep	DDG4
Х	Х
Х	Х
Х	Х
Х	

Summary and Outlook

- The DD4hep toolkit (+extensions) accepted: Client validation ongoing
- Simulation kit DDG4 is being validated/deployed
- Alignment / Conditions support to be reassessed
 - Will be developed in collaboration with LHCb
 - => Multi-threading issues to be sorted out
- Validate, verify, enhance and document

Backup

Design Principles

- Separation of data and behavior
 - Data are fully accessible (no encapsulation!)
 - Behavioral classes are wrappers around objects containing data only
 - There may be many behavioral wrapper implementations using the same data objects
 - User chooses "most suitable" behavior
 - One "data-object" may be shared among many behavioral wrapper instances

Class Diagram: Detector Element

Feb 24th 2015

AID

Standard Detector Palette: DDDetectors

Mostly arose from the SiD model

Layer based detectors

Feb 24th 2015

- Tracker barrel & endcap
- Several calorimeter constructs
- Partially with measurement surfaces (see also talk by F. Gaede)

Plugin mechanism to enhance detector elements

- Neat mechanism to attach user defined optional data
 Proof that <u>'anticipate the unforeseen'</u> works
- NOT intrusive to detector constructors
- Flexible definition of the measurement surface

Geant4 Interactivity

Idle> ls /dda4 Command directory path : /ddg4/

Guidance : Control for all named Geant4 actions

Sub-directories :

/dda4/RunInit/ Control hierarchy for Geant4 action:RunInit /ddg4/RunAction/ Control hierarchy for Geant4 action:RunAction /ddg4/EventAction/ Control hierarchy for Geant4 action: EventAction /dda4/LcioOutput/ Control hierarchy for Geant4 action:LcioOutput

Sub-directories : Commands :

show * Show all properties of Geant4 component:UserParticleHandler Control * Property item of type bool MinimalKineticEnergy * Property item of type double Name * Property item of type std::string OutputLevel * Property item of type int TrackingVolume_Rmax * Property item of type double TrackingVolume_Zmax * Property item of type double name * Property item of type std::string Idle> /ddg4/UserParticleHandler/TrackingVolume Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1265. Idle> /ddg4/UserParticleHandler/TrackingVolume_Rmax 1.3*m Geant4UIMessenger: +++ UserParticleHandler> Setting property value TrackingVolume Rmax = 1.3*m native:1300. Idle> /ddg4/UserParticleHandler/TrackingVolume_Rmax Geant4UIMessenger: +++ UserParticleHandler> Unchanged property value TrackingVolume_Rmax = 1300. Idle>

Geant4 interactivity interfaced to every action object

Enabled on request

Actions have properties (similar to Gaudi)

- Interrogate properties
- Modify properies

ILD Software Workshop Hamburg

Configure DDG4 Application with python

```
kernel = DDG4.Kernel()
lcdd = kernel.lcdd()
kernel.loadGeometry("file:"+install_dir+"/DDDet
kernel.loadXML("file:"+example_dir+"/DDG4_field
DDG4.importConstants(lcdd)
```

```
Generation of isotrope tracks of a given multip
. . . .
# First particle generator: pi+
gen = DDG4.GeneratorAction(kernel,
          "Geant4IsotropeGenerator/IsotropPi+")
gen.Particle = 'pi+'
gen.Energy = 100 * \text{GeV}
gen.Multiplicity = 2
gen.Mask = 1
kernel.generatorAction().adopt(gen)
# Install vertex smearing for this interaction
gen = DDG4.GeneratorAction(kernel,
          "Geant4InteractionVertexSmear/SmearPi
gen.Mask = 1
gen.Offset = (20*mm, 10*mm, 10*mm, 0*ns)
gen.Sigma = (4*mm, 1*mm, 1*mm, 0*ns)
kernel.generatorAction().adopt(gen)
```

- Python configuration snippets
 - Loading geometry
 - Configuring actions
 - Steer Geant4 until it's prompt/batch
- C++ config ~ same
- Alternative: xml Load xml with lcdd

Geant4 Provided Hooks

[and what we want to do inside]

Main issue: flexible configuration

Example of an Action Sequence: Event Overlay with Features

Views & Extensions: Users Customize Functionality

DD4hep is based on handles to data

- Clients only use the handles
- Possibility of many views based on the same DE data
 - Associate different behavior to the same data
 - Views consistent by construction

Feb 24th 2015

- User data according to needs
- Be prudent: blessing or curse
 - User data: common knowledge
 - No one fits it all solution
 - Freedom is also to not do everything what somehow looks possib.

