

25.02.2016 ILD optimisation workshop

VXD optimisation and low pt tracking

Yorgos Voutsinas

Scope of VXD

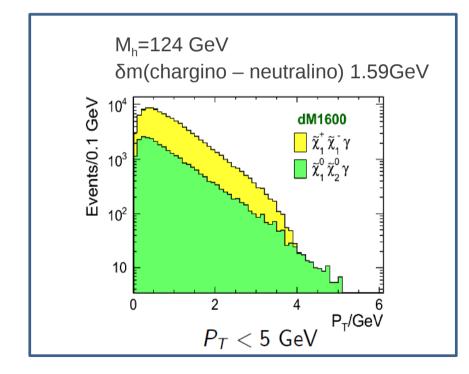
Candidate designs

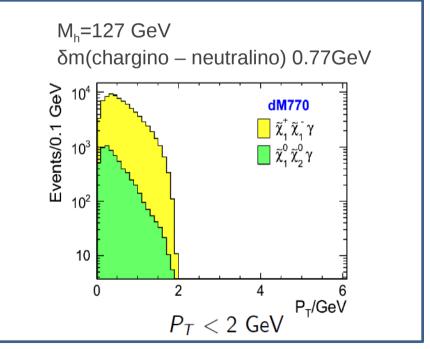
Track finding in VXD

Pair background and time resolution

- Identification and study of ghosts and real pair bkg tracks
- Standalone pat. rec. or not?

VXD time resolution, tracking and higgsinos


VXD role


Unprecedented (for collider exp) impact parameter resolution

• Charm tagging

Efficient reconstruction of low momentum tracks

- Crucial for tracks that don't reach or create insignificant amount of hits in TPC
 - Reconstruction of vertex charge
 - Light higgsino study few very soft particles in final state

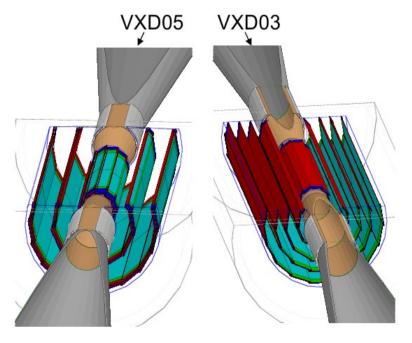
VXD optimisation challenges

Time resolution that can cope with beam – induced bkg while

- Sensors single point resolution ~ 3 μ m
- MB / layer ~ 0.1% X0

Physics imposed requirements (spatial resolution, material budget) more or less understood

> $\sigma_{\mu} = a \oplus b/psin^{3/2}\theta$ $a \le 5\mu m, b \le 10\mu m \text{ GeV}$


Machine induced requirements are more vague

• How fast we should be to effectively cope with pairs?

ILD VXD candidates (I)

2 main candidate geometries, one with 5 single layers and one with 3 double

- > The last years the focus is on the double layers geometry
- > No strong physics argument to chose double layers geometry over single layers
- Decision based on potential advantages on pattern recognition or bkg hit rejection envisaged by R&D groups
- Single layers is still alive (e.g. DEPFET)

ILD VXD candidates (II)

Many promising sensor technologies, in different maturity levels

A not exhaustive list

- FPCCD (readout between bunch trains) but very fine granularity (~6µm pitch)
- CMOS (layers equipped with 3-4 different sensors)
- DEPFET (optimised for a single layers VXD)
- Sol (SOFIST)

We will explore pair bkg effect on VXD performance for 2 CMOS designs and various hypothetical VXDs

	DBD VXD		Ideal VXD		Conservative VXD		Ambitious VXD	
layer	σ _{sp} (μm)	σ _{time} (μs)	σ _{sp} (μm)	$\sigma_{_{time}}(BXs)$	σ _{sp} (μm)	σ _{time} (μs)	σ _{sp} (μm)	σ _{time} (μs)
L1 / L2	3/6	50 / 10	3/ 3	1/1	4/4	4/4	3/3	1/1
L3 / L4	4 / 4	100 / 100	3/3	1/1	4/4	8/8	3/3	2/2
L5 / L6	4 / 4	100 / 100	3/3	1/1	4 / 4	8/8	3/3	2/2

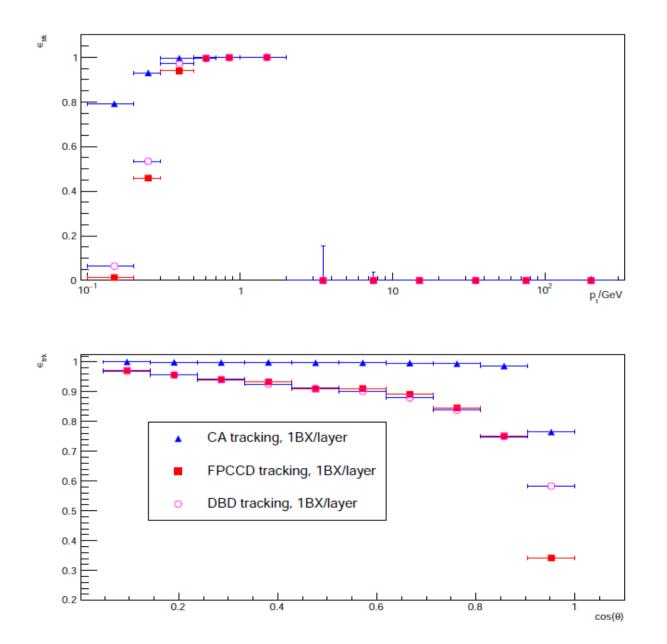
Tools to address VXD optimisation

We have 2 candidate geometries, various technologies with different sensor specifications

We have as well a number of pattern recognition approaches

A question need to be addressed is whether a standalone VXD tracking (therefore very efficient at low pt) would bring important advantages

- Would also impose very strict requirements to sensor design


DBD silicon tracking shows poor performance in the presence of beam bkg

We will focus on

- Standalone VXD tracking based on minivectors
 - Makes sense in specific VXD designs (alternation of fast/precise layers)
- FPCCD tracking, initially developed for a FPCCD detector
 - Can be used to other VXD concepts as well
 - Use SIT (single BX time resolution) to form track seeds that are propagated inwards using a kalman filter

Why a standalone VXD tracking

Higgsinos, ideal VXD

Why a standalone VXD tracking

Advantages of a standalone VXD tracking to a study demanding on low pt track reconstruction

- # higgsino events that survive the selection filters for 500 fb⁻¹ w/o pairs

	Fast sim	DBD	FPCCD	CA
No BKG	~4.6k	~2.9k	~3k	~4.5k

 But what will be the effect of pair bkg to tracking purity (ghosts / real pair tracks)?

Bad tracks I. Ghosts

A track related to >1 true particles, when none of them contributes > 75% of the track hits, is defined as ghost

Ghosts are artefacts of the pattern recognition

- > Can be suppressed via optimising the track algorithm
- > Their minimisation is a crucial aspect of pattern recognition

Strategy of the study

- Overlay pair bkg according each VXD layer integration time to higgsino's sample
- Keeping the MC info of every pair particle
 - Huge computer resources (disc space, RAM)
 - > We had to overlay only 1 BX in TPC
 - > Therefore the study is restricted to the silicon tracks
 - Makes sense for VXD optimisation

Ghost rate

Calculate ratio ghost tracks / all tracks

VXD concept	Algorithhm		
	CA	FPCCD	
1BX/layer	0.03%	0.3%	
5BX/layer	0.4%	1.0%	
20BX/layer	2.7%	~20%	

Higgsino has low track multiplicity

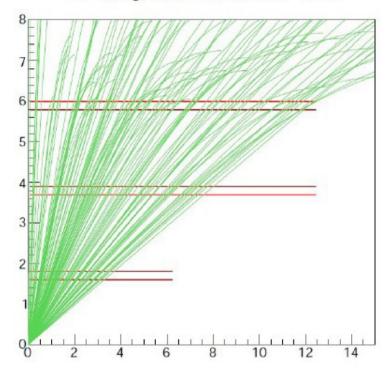
Repeat the study to a 6 fermions sample, ideal VXD & CA tracking

• ~ 0.2 % ghosts / real tracks

Bad tracks II. Pairs

Those are real tracks that the tracking algorithm should find...

Can be suppressed via

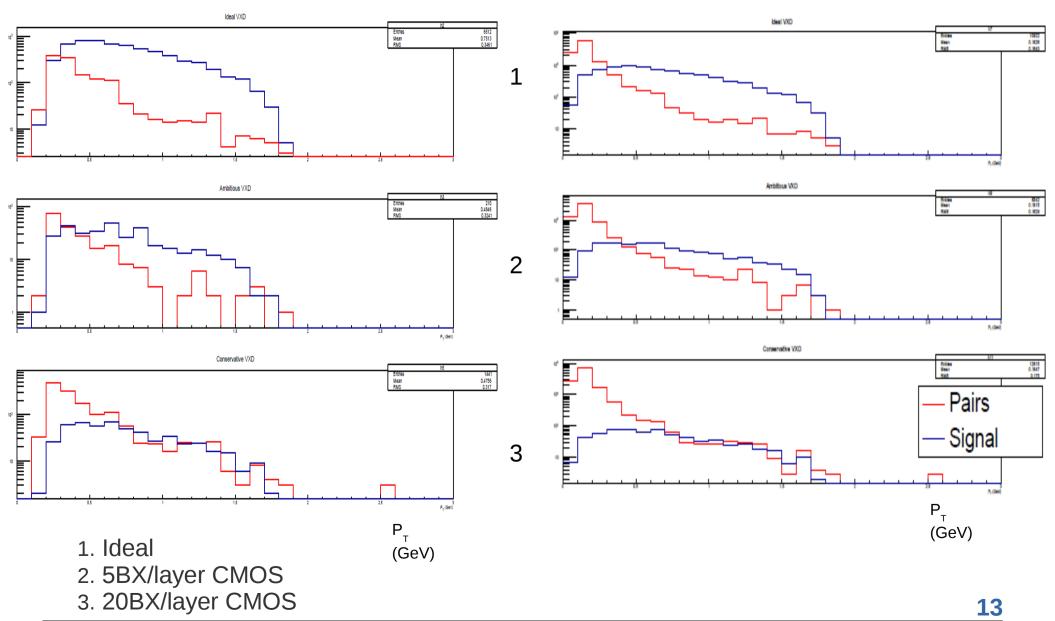

- 1) A faster detector
- 2) Hit rejection due to cluster shape (maybe FPCCD approach)
- 3) With proper filters during analysis

Excellent probe for the detector's required time resolution

Pair tracks / event

Algorithm	VXD design			
	1BX/layer	5BX/layer	20BX/layer	
FPCCD	0.3	0.9	6.1	
CA	2.5	7.5	52.4	

Pair background in the VXD for 10 BX



From Armin Taenzer

Pairs vs signal PT distribution

FPCCD

Cellular automaton

Higgsinos vs VXD design and pat. rec

Higgsino poses strict requirements on low pt tracking and bad tracks suppression

Scenario has been studied in fast simulation

Full simulation & reconstruction of 500 fb^{-1} for chargino & neutralino sample

- Overlaid beam pair bkg w.r.t. VXD layers integration time

No simulation/reconstruction of physics bkg so far

 Keep the same preselection cuts to separate physics from background as in fast simulation

Cheating in the particle ID

Goals

- Evaluate the effect of the "bad" tracks issue (not addressed in fast sim)
- Identify VXD requirements imposed by the feasibility of the study
- Validate & compare new pattern recognition

Pair bkg challenge

Chargino reconstruction: requirement for 1 lepton & 1 charged π and no other PFOs

- Suppress by $\sim 10^2$ the remaining SM bkg & significantly reduces the neutralino contamination
- Imposes very effective elimination of ghosts & pair tracks

Pairs have mostly low P_{τ}

- Scan cut values – choose the one that maximises the S / B (where B is pair tracks)

	Fast sim	FPCCD P _T Cut (GeV) Events		CA P _T Cut (GeV) Events		
Ideal Ambitious	4.6k	0 0.28	2.3k 2.1k	0.27 0.35	2.1k 1.6k	
Conservative	e	0.3	1.6k			

Polarised chargino cross section

- $\delta\sigma/\sigma = 1 / \sqrt{\epsilon * \pi * \sigma * \int Ldt}$
 - $\epsilon = \#$ good events passing selection cuts / total good events
 - π = # good events passing selection cuts / all events passing selection cuts
 - Ideal VXD
 - Pe^+e^- , $\delta\sigma/\sigma = 2.4\%$ (assuming physics bkg contamination remains same as fast sim)
 - Ambitious VXD
 - δσ/σ = 2.5%
 - Fast sim
 - $\delta\sigma/\sigma = 1.6\%$

Conclusion

Large parameter space of VXD concepts

2 geometries, many technologies featuring various values for time / space resolution

Effect of pairs on pattern recognition and physics performance under study

- On going work to probe the minimum required time resolution

Higgsino analysis seems feasible for relatively fast detectors (not only for ideal ones)

- Need to keep in mind that is a semi-realistic study ($\gamma\gamma$ \rightarrow hadrons not included, pefect particle ID)
- Stressed the importance of using SIT for seed generation to mitigate the effect of pairs (FPCCD tracking style)
- Standalone minivector VXD tracking shows very interesting performance for low pt track reconstruction (efficiency, fake rate, CPU perf)
- However the reconstruction of the track of pairs seems to put a limit on the benefit we can gain