From Monte Carlo to Reality - Experiences from ATLAS.

Experiences from 2010 and 2015

N. Styles (DESY) ILD Software and Optimization Workshop DESY, 25/02/2016

The ATLAS Experiment

General Purpose Detector at CERN LHC

- Covers very broad physics program
- 'Classical' collider experiment layout forward-backwards symmetric cylindrical detector
- Separated into barrel & two endcaps

ATLAS Inner Detector

Innermost component of ATLAS detector

- Responsible for precision reconstruction of charged particle trajectories
- Primary/secondary vertexing
- Electron reconstruction (together with calo)
- Muon reconstruction (together with MS)
- B-tagging, Tau identification...

Comprises 3 different detector technologies

- High-granularity planar Silicon (Pixels)
- Silicon Microstrips (SCT)
- Gaseous Straw Tubes (Transition Radiation Tracker - TRT)

ATLAS Timeline (up to end of Run 1)

Unexpected changes to schedule...

> Delays from LHC Machine schedule allowed extra time to prepare for data

Allowed ATLAS to be very well prepared when first collisions arrived!

Development of Detector Material Description

- Amount of material in ID detector description grew significantly since TDR
 - Factor 2 or more increase in some regions!
 - Has significant effect on tracking performance
 - Note differences between shortly-before and after the start of data taking...

Material Studies in Early Data

Inner Detector material probed through hadronic interactions

- Reconstruct secondary vertices
- Number and location of secondary decay vertices maps distribution of ID material
- Makes detailed, precise, comparisons of simulated detector to real detector possible
- Similar studies also performed using photon conversions

Differences between simulation and reality

> Phase discrepancies in pixel module coolant cause density differences

N. Styles | ILD Optimization and Software Workshop | 25/02/2016 | Slide 8

Detector Alignment

- > Detector aligned at 3 levels
 - Level 1: Largest structures barrels, endcaps
 - Level 2: Layers, disks, TRT modules & Wheels
 - Level 3: Individual modules, TRT wires

> Track-based alignment technique

- Assume track model minimize hit-to-track residuals
- Use both "global" and "local" (i.e. with respect to neighbours) X² minimization
- > Additional constraints
 - Module overlaps offer additional constraints
 - Constraint also from beam spot
 - Especially important for class of distortions under which X² is invariant – aka "weak modes"...

Local Alignments and Pixel Module Distortions

> Pixel modules not flat...

- Seen from surveys probably mechanical stress from mounting
- bowing' of modules also correct in alignment
- Local X², only using overlapping modules
- Minimal SCT bowing

Alignment Weak Modes

- > Both Charge-symmetric and Charge-asymmetric ("sagitta") deformations possible
 - Affect mainly momentum measurements B-field misalignments also affect transverse impact parameter d₀

Constraining Weak Modes

- Reconstructed values of physics parameters allow weak modes to be constrained
 - J/Ψ, Z, K_s⁰ mass
 - Ratio of calorimeter Energy to ID momentum
- > Used very successfully
 - Revealed B-field tilt wrt Z axis
 - Evidence of twist-like deformation in one endcap
 - No curl-like deformations observed
- Iterative' procedure also applied
 - Allows local deformations to be identified with high granularity

Cluster sizes

In both Pixel and SCT discrepancies in sizes of clusters between Monte Carlo and data

- For pixel, Neural Network-based approach applied to clusters to identify deposits from multiple particles
 - Especially useful in high-p_T jet cores

Improving the detector for Run 2

- New innermost pixel layer, 'Insertable B-Layer' (IBL)
 - TDR in September 2010, Inserted May 2014
 - Now inserted into ATLAS pixel detector for Run 2
 - Replaced "Service Quarter Panels" recovered lost optical links
 - Relocated Optoboards for "intervention without extraction" in future

Cosmic Data Taking in 2014

- > After extensive program of detector and reconstruction software upgrades...
 - ...big relief to see cosmic tracks with hits in the IBL
 - Physics coordinator commented "OMG that is so beautiful!"

Cosmic Data Studies

Cosmic data used for a number of studies

- Measurement of cluster properties (including Lorentz angle) in pixel sensors (IBL contains both Planar and 3D silicon sensors)
- Alignment of IBL (obviously..)
- Also revealed an issue which was somewhat unexpected...

IBL Bowing Issue

> Large differences in tracking properties between cosmics runs observed

- Cause not immediately obvious initially...
- Due to Coefficient of Thermal Expansion (CTE) mismatch in stave components
 - Investigated with Finite Element Analysis

Distortion magnified 20x to aid visualization

Bowing Corrections

- Effect obvious when data viewed in temperature slices
 - Minimal bowing at ~room temperature
 - Maximally ~100µm at planned operating temperature of -20°C

> Temperature-dependent corrections allow effect to be compensated for

IBL Bowing Stability

- > IBL temperature must be carefully monitored
- Distortion initially thought to be 'stable'
 - Increasing module power consumption means that is not longer true
 - Effect related to total ionizing dose received
- > Dynamic alignment correction required
 - Per stave, and per 100 luminosity blocks (period of data taking over which conditions ~constant, approx 1 minute)
- Long-term stability to be carefully investigated

IBL Material Studies

Initial Run 2 simulation geometry found to have deficiencies

- Some components (e.g. capacitors, other surface mounted devices) were left out of simulation of IBL
- > Updated geometry produced to correct this
 - Improved data/MC agreement observed

SCT Extension Efficiency

- Complementary method to conversions/hadronic interactions
 - Look at ratio of tracks in pixel to 'full' silicon tracks
- Probes material between pixel and SCT
 - In particular at higher |η| where other methods can't access
 - Location of new Service Quarter Panels for Run 2
- Results suggest some deficiencies remain in geometry description at high |n|
 - Region with much inactive material and complex structures

TRT Gas Mixture

- Leaks developed in TRT Gas system during Run 1
 - Ozone formation caused localized corrosion
- During Run 1, Xenon-based active gas was used
 - This is expensive; ~16 CHF per litre
 - In most affected areas leak >10 litres per hour
- For Run 2 investigate use of different gases
 - Argon and Krypton-based mixes
- Needs to be accounted for in reconstruction
 - Also in Simulation samples

Summary

- Number of unexpected issues arose during ATLAS Inner Detector commissioning/running
 - Both for Run 1 and Run 2
- > All of these issues were dealt with, and wide-ranging physics program was (and continues to be) extremely successfully carried out
- Nevertheless, would have been better to include such features in simulation/reconstruction etc from earlier stage
 - Or avoid altogether if possible
- These experiences are now feeding into the design process of the "ITK" tracker for the Phase 2 ATLAS Upgrade
- Hopefully these can also be useful observations for the design process of ILD!

