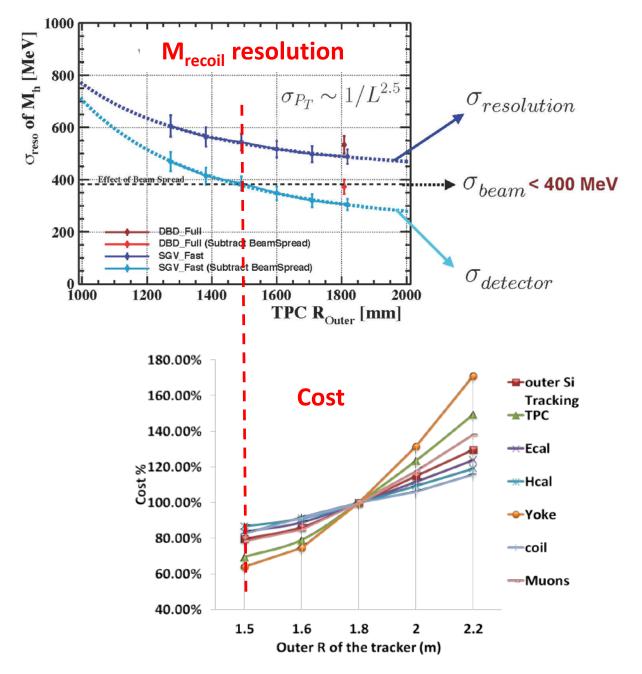
ILD SOFTWARE WORKSHOP 22-26 February 2016

TECHNICAL COORDINATOR VIEW ON ILD OPTIMIZATION

- General principles
- Global parameters
- Subdetectors


GENERAL PRINCIPLES

GOALS:

- Provide in ~2 years a new (light) document presenting an updated baseline design of the detector (*NB: no subdetectors technology decisions on this time scale*).
- Gather as much information as possible to be in situation to rapidly prepare a Detector TDR in case the ILC proceeds in Japan.

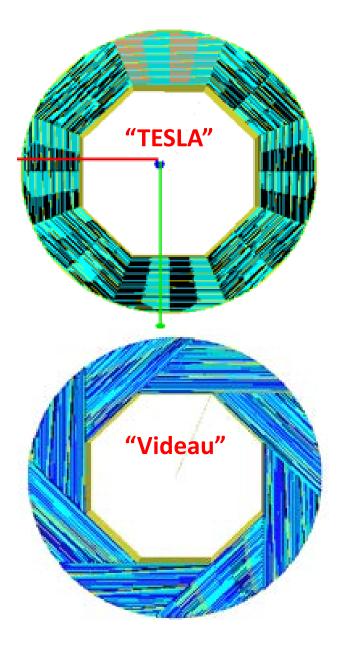
METHOD:

- Factorize intrinsic constraints (physics, etc...) from external contingent constraints (push pull, etc...) to keep benefit of studies in case the context evolves.
- Factorize global parameters (sizes, B field, structure, etc...), which have priority, from internal detector parameters (technology, granularity, etc...) which can be defined later.
- Include "reality" parameters (services, integration, cost, etc...) into optimization criteria.
- Work in close cooperation with other consortia (CLICdp, SiD) to avoid duplication of efforts and allow cross-checks / comparison of results.

GLOBAL PARAMETERS : Size

- Already existing indications that a reasonable detector radius option might be around 1.5 m.
- Suggest to have at most 2 detector size options for the comprehensive physics benchmark simulations, far enough from each other to see significant differences in the performance and get the derivative.

Concept\Key param.	ILD (DBD)	CLICdet_2015 (3 TeV)
Tracker	TPC	Silicon
Solenoid Field [T]	3.5	4
Solenoid Free Bore [m]	3.3	3.4
Solenoid Length [m]	8	8.3
VTX Inner Radius [mm]	16	31*
ECAL Inner Radius [m]	1.8	1.5
ECAL ΔR [mm]	172	159
HCAL Absorber B / E	Fe	Fe
HCAL λ _ι	5.5	7.55
Overall Height [m]	14	12.8
Overall Length [m]	13.2	11.4


GLOBAL PARAMETERS : Size cont'd

Suggest to take for the 2 sizes : the DBD configuration and something close to CLICdp

Both differ mainly by the tracker radius

<u>Advantages</u> :

- Keep DBD configuration as reference to quantify improvement of methods/components
- Allow comparison/cross checks with CLICdp
- Allow comparison between TPC and Si tracker options

GLOBAL PARAMETERS : other points to be fixed before comprehensive physics benchmarks simulations

- Baseline calorimeters mechanical structure (TESLA ↔ Videau)
- Need for anti DID (\rightarrow field map)

Reviews with external experts to be organized soon

Stray fields (\rightarrow yoke size) need also better understanding

SUBDETECTORS

Comprehensive physics benchmark samples should (ideally) :

- allow further tuning of granularities (#layers, cell sizes) and comparisons of technologies
- Include realistic 1st order description of detector services, dead zones, etc...

Subdetector working groups are currently being set up. They will be asked to :

- contribute to the validation of their simulation software within the global ILD simulation framework (simulation contact person to be nominated in each working group)
- provide interface documents with information on their external boundaries and services