Vertex charge reconstruction

Poeschl R., Richard F., <u>Bilokin S.</u> LAL, Orsay

ILD Software & Optimisation WS at DESY

Objective

- Main purpose of this work is to detect the charge of top and antitop quarks. This is crucial for calculation of forward-backward asymmetry A_{fb} in tt process at ILC
- Properties of decay products from the B-hadrons are used to determine the charge of initial t-quark
- The charge of K-meson from ternary vertex is directly connected to the charge of tquark

Research methods

- We are using 500 GeV semileptonic ttbar sample with pair background v01-16-05 (DBD)
- Same sample using CellsAutomatonMV as tracking algorithm v01-17-08 (Minivector)
- TruthVertexFinder from MarlinReco/Analysis to get generated vertices
- Modified VertexChargeRecovery from MarlinReco/Analysis

Number of tracks comparison DBD

52.0% on the diagonal

- Btag cuts reduce fraction events with low multiplicity of B-Vertices. TruthVertexFinder is used to get N_{qen}

45.7% on the diagonal

4

Number of tracks comparison DBD Btag > 0.8 & Pb > 15 GeV

52.0% on the diagonal

62.3% on the diagonal

The recovery is done by VertexChargeRecovery processor modified 5 to use tracks rejected by PandoraPFA

Top asymmetry: diagonal events

- TruthVertexFinder works correctly!
- To reach this quality we should maximize the vertex reconstruction quality:
 - Recover corrupted vertices
 - Reject corrupted vertices
 - Apply different tracking algorithms
 - Use alternative vertexing algorithm

95.5% precision

• The result of top asymmetry reconstruction with correctly reconstructed b vertices.

Missed tracks DBD

- Statistics:
 - All missed tracks ~ 12%
 - No PFO 3.8%
 - No VXD, no FTD 2.4%
 - No track 1.3%
 - Others 4.5%

12% of generated

• Angular distribution of the missed tracks from reconstructed vertices. DBD tracking.

Missed tracks DBD vs Minivector

12.2% of generated

12.3% of generated

• Angular distribution of the missed tracks from reconstructed vertices. DBD tracking.

Missed tracks DBD vs Minivector+recovery

8.1% of generated

7.4% of generated

 Angular distribution of the missed tracks from reconstructed vertices. VertexChargeRecovery is used

Number of tracks comparison Minivector

51.0% on diagonal

63.3% on diagonal

Btag > 0.8 & Pb > 15 GeV

Top asymmetry - DBD reconstruction

65.5% precision

67.7% precision

 The result of top asymmetry reconstruction with real b charge 11 measurement. DBD tracking, recovery

Top asymmetry – Minivector reconstruction

63.2% precision

73.4% precision

• The result of top asymmetry reconstruction with real b charge 12 measurement. Minivector tracking, recovery

Reconstruction quality in Minivector

 Momentum uncertainty of reconstructed tracks (left) and distance between generated and reconstructed vertices (right) in the barrel and in the forward region.

Summary

- Vertex reconstruction efficiency can be tested on physics observable – top quark asymmetry
- B-tracks rejected by PandoraPFA are successfully added by VertexChargeRecovery
- Vertex and track reconstruction precision is lower in the forward region
- Minivector tracking give a slightly better results than DBD tracking and it has better behavior in the forward region
- Still a number of handles to improve

Further work

- Use new version of minivector, which is supposed to solve some problems observed in the current analysis (this week)
- Investigate the problems in the forward region
- Use Adaptive Vertex Fitting algorithm
- Use ternary vertex kaon charge (just started)

Thank you!

Offset deviation - Minivector reconstruction

 Majority of missed tracks have low offsets. These tracks can be recoverable if their angle w.r.t. secondary vertex is small

Momentum - DBD reconstruction

Momentum of the missed tracks for the barrel and the forward region

18

Top asymmetry DBD

65.5% precision

96.3 % precision

 The result of top asymmetry reconstruction with real b charge 19 measurement. DBD tracking, no recovery

Preliminary results of recovery

- Histogram of *α* angles for recovered LSOT particles and fake particles taken by algorithm
- Up to 67% of target particles can be recovered with 82 % of purity
- The recovery procedure should be optimized by charge reconstruction quality
- Technical issues will be discussed at HLRecoW
- The number of recovered particles can be increased by injecting tracks that were not used by PFA in the recovery

Comparison of offsets

- The secondary and missed particles are generated particles from B-mesons.
- The "no vertex" particles are tracks that had not been attached to neither primary nor secondary vertex.
- "No vertex" particles and primary vertex tracks are reconstructed tracks.

 True secondary particles are excluded from primary and "no vertex" particles histograms

Comparison of offsets

 After VXD hits cuts the main background is "no vertex" particles. Primary particles have low offsets after cuts.

Number of particles comparison

One should diagonalize this table as much as possible to get a correct charge measurement

23

Top asymmetry: Using generated b charge

99.4% precision

72.5% precision

• The result of top asymmetry reconstruction with 100% purity and ₂₄ efficiency of b charge.

Recovery of vertices

Probability to lose a particle

- The calculated chance to lose a particle from reconstructed SOT vertex is ~14%:
- It subdivides into:
 - Not reconstructed as PFO ~ 5%
 - No tracking information ~ 1.5%
 - Has reconstructed track ~ 3.5%
 - No hits in VXD ~ 3%
 - Recoverable particles from 6% to 9%

 Average B meson multiplicity is 5, and for each track we have such probability to not to reconstruct it as SOT-Vertex particle

C Event Display

- Front and side projection of ILD event in CED.
- It was configured to show only prongs from bhadrons
- View can be switched between generated particles to reconstructed ones

Definition of Estimators

- To compute the offset we are using the linear approximation of tracks
- The resolution on the offset can be approximated by a formula from DBD:

$$\sigma = a \oplus \frac{b}{|p|sin^{2/3}\theta}$$
$$a = 5\mu m; b = 10\mu m \cdot GeV$$

JER in ILD TDR

Complicated region in detector cause an additional bump in jet energy resolution plots

Origin of no vertex tracks

- This is offset histogram of "no vertex" tracks subdivided by different origin of a track using generator truth after VXD hits > 3 cut.
- Main contributions are coming from c- and shadrons, taus and "gluons"

 Majority of c-hadrons and tau-leptons should come from W-jets, and these tracks have to be separated from b-jets by large angle

Truthlinks used

There is ~3% uncertainty between these truthlinks

Lost SOT-Tracks analysis

Momentum comparison

Angular comparison

 There is a tendency to lose a track with low momentum or in forward region. We should investigate all the reasons to lose a track

Generated vertices

 Distance from IP to B-meson decay vertex (left), prongs of initial B-meson (right)

34

Multiplicity of b-c vertices

b-vertex

c-vertex

 Number of tracks for b and c vertices. For charge measurement the 1-prong decay is dangerous and it is present in both vertices

Precision of vertex position

Distance

Transverse distance

Distance between reconstructed and generated vertices. The direction of b-hadron known precisely.

• Probability (left) and chi-square from LCFI+ (right) comparison for 1 vertex per b-jet (dots) and 2 vertices per b-jet (yellow). The presence of ternary vertex increase chi-square value of vertex fitting.

Reconstructed vertices

 Number of tracks from generated vertices (yellow) and reconstructed (crosses). Distributions do not coincide

Lost particles analysis

LSOT-VTX Particles

LSOT-NOVTX Vertices

 There is an enhanced risk to lose a 1-track decay vertex and high chances to miss any SOT vertex in forward region