Track fitting in the ILD non-uniform magnetic field

Bo Li¹ Keisuke Fujii²

¹ Laboratoire Leprince-Ringuet, École polytechnique

²Institute of Particle and Nuclear Studies High Energy Accelerator Research Organization (KEK)

ILD Software and Optimization Workshop, DESY February 25, 2016

1 Introduction

- 2 The track fitting algorithm
- 3 Test and performance

1 Introduction

- 2 The track fitting algorithm
- 3 Test and performance

- High performance of tracking is essential to the physics program on the future linear collider experiment:
 - Tracking detectors should have excellent spatial resolution and minimized track distortion;
 - **Tracking algorithm** need to has the ability to get momentum with high accuracy in the real non-uniform magnetic field.
- The Kalman filter tracking software package, KalTest:
 - It has been worked successfully in the physics studies based on ILD uniform magnetic field and LCTPC large prototype beam test;
 - Since ILCSoft v01-17-07, KalTest can deal with the track fitting for both uniform and non-uniform magnetic field;
 - To use track fitting for non-uniform magnetic field, you should provide a field map by TEveMagField class to KalTest. (see KalTest/src/bfield/TBField.h)

Introduction

2 The track fitting algorithm

- Helical track model
- The updated algorithm
- Implementation

3 Test and performance

Equation of motion for a charged particle

• The equation of motion of a charged particle in a magnetic field is

$$m\frac{d^2\boldsymbol{x}}{dt^2} = Q\frac{d\boldsymbol{x}}{dt} \times \boldsymbol{B}(\boldsymbol{x}), \qquad (1)$$

where m is the relativistic mass, and Q is the charge of particle.

• If the magnetic is uniform, and we assume its direction is parallel with z axis of coordinate system, then the trajectory of charge particle can be solved analytically,

$$\begin{cases} x = x_0 + d_{\rho} \cos \phi_0 + \frac{\alpha}{\kappa} [\cos \phi_0 - \cos(\phi_0 + \phi)] \\ y = y_0 + d_{\rho} \sin \phi_0 + \frac{\alpha}{\kappa} [\sin \phi_0 - \sin(\phi_0 + \phi)] \\ z = z_0 + d_z - \frac{\alpha}{\kappa} \tan \lambda \cdot \phi \end{cases}$$
(2)

which is a helix equation.

Helical track model

• According to the paramtrized track equation, helix in *xy* plane is plotted as:

Figure: Helical track model.

• The state vector of a track is defined as

$$\boldsymbol{a}_k = \left(\begin{array}{c} d_{
ho}, \phi_0, \kappa, d_z, \tan \lambda \end{array}
ight)^{\mathrm{T}}.$$

(3)

Kalman Filter

• For each site, Kalman filter algorithm has two steps:

Prediction:

$$a_k^{k-1} = f_{k-1}(a_{k-1}),$$
 (4)

in which, f_k is propagation function. And the corresponding propagation matrix is defined by

$$\boldsymbol{F}_{k-1} = \frac{\partial \boldsymbol{f}_{k-1}}{\partial \boldsymbol{a}_{k-1}}.$$
(5)

Filtering:

$$\boldsymbol{a}_{k} = \boldsymbol{a}_{k}^{k-1} + \boldsymbol{K}_{k} \left(\boldsymbol{m}_{k} - \boldsymbol{h}_{k}(\boldsymbol{a}_{k}^{k-1}) \right), \qquad \qquad (6)$$

where K_k is the gain matrix which is related to the propagation matrix, h_k is the measurement function.

• Kalman filter is implemented in KalTest¹, together with track models and basic detector geometries.

¹KalTest manual is at http://www-jlc.kek.jp/jlc/en/subg/soft/tracking/kaltest.

Basic idea

To use the helical track model of KalTest in the non-uniform magnetic field, we can

- assume the magnetic field between two nearby layers is uniform;
- transform the frame to make the z axis point to the direction of magnetic field.

Figure: The updated track propagation procedure.

Therefore we now have a **segment-wise helical track model**, and we should recalculate the propagation function and propagation matrix.

How to transform the frame

Figure: Transformation: translation and rotation

For details of the algorithm, see "Kalman-filter-based track fitting in non-uniform magnetic field with segment-wise helical track model. Computer Physics Communications 185 (2014) 754-761".

Implementation

Figure: Class diagram of KalTest

1 Introduction

2 The track fitting algorithm

3 Test and performance

Simulation conditions

• Suppose the non-uniform magnetic field has a form of

$$\begin{cases} B_x = B_0 kxz \\ B_y = B_0 kyz \\ B_z = B_0(1-kz^2) \end{cases},$$

in which, $k = \frac{k_0}{z_m r_m}$, $B_0 = 3$ T, $z_m = r_m = 3000$ mm;

- Runge-Kutta track generator: TEveTrackPropagator in ROOT and bisection method are used;
- Track parameters: dip angle $\lambda \in [0, 0.5]$, azimuth angle $\phi \in [0, 2\pi]$;
- Detector:
 - 251 layers;
 - distance between two nearby layers is 6 mm;
 - $R_{\rm in} = 300$ mm;
 - Point resolution $\sigma_{r\phi} = 100 \ \mu m.$
- To see the effect of the non-uniform magnetic field, the track with the same initial parameters are also simulated in uniform magnetic field.

Event display

Figure: Event display. 2 GeV tracks generated in uniform magnetic field (blue curve), and non-uniform magnetic field (red curve, $k_0 = 5$).

Momentum resolution

- $k_0 = 1$, p = 10 GeV;
- Tracks are reconstructed in uniform magnetic field.

Figure: Momentum and confidence level by the original algorithm.

Momentum resolution

- $k_0 = 1$, p = 10 GeV;
- Tracks are reconstructed in non-uniform magnetic field.

Figure: Momentum and confidence level by the updated algorithm.

Results with different non-uniformity and tracking step size

Table: Mean and RMS of $\frac{1}{p}$ (in units of $10^{-1} \cdot (\text{GeV}/c)^{-1}$ and $10^{-5} \cdot (\text{GeV}/c)^{-1}$ respectively) at 10 GeV/c.

(a) Stan size 6 man

(a) Step size 0 mm			
k_0	$\lambda = 0.1$	$\lambda = 0.3$	$\lambda = 0.5$
1	1.0000/8.03	0.9998/7.89	0.9995/7.65
2	1.0000/8.05	0.9997/8.09	0.9990/8.36
3	0.9999/8.07	0.9995/8.31	0.9984/9.20
(b) Step size 1 mm			
k_0	$\lambda = 0.1$	$\lambda = 0.3$	$\lambda = 0.5$
4	1 0000 /0 00	1 0000 /7 00	
T	1.0000/8.03	1.0000/7.89	0.99999/7.65
1 2	1.0000/8.03	1.0000/7.89 0.99999/8.10	0.99999/7.65 0.9998/8.36
	$\frac{k_0}{1}$ 2 3 k_0	(a) $k_0 \lambda = 0.1$ $1 1.0000/8.03$ $2 1.0000/8.05$ $3 0.9999/8.07$ (b) $k_0 \lambda = 0.1$ $(c) 0.000$	$k_0 \lambda = 0.1 \lambda = 0.3$ $1 1.0000/8.03 0.9998/7.89$ $2 1.0000/8.05 0.9997/8.09$ $3 0.9999/8.07 0.9995/8.31$ (b) Step size 1 mm $k_0 \lambda = 0.1 \lambda = 0.3$

- MacBook Pro, OS X 10.6; 2.4 GHz Intel Core 2 Duo; 4 G Memory.
- 1,000 tracks

Table: Time consumption of functions (sec.)

Function	Time expense
Total	18.82
TVKalState::Propagate	11.53
TVKalSite::Filter	7.27
TTrackFrame::TTrackFrame	0.87
TTrackFrame::TransformVector	6.59
TTrackFrame::TransformSv	2.58
TVSurface::CalcXingPointWith	5.90

• The total CPU time is only about twice of the original code.

Test in ILD magnetic field

- The Anti-DID field, which was implemented in Mokka for pair background study, is used in this study
- The non-uniform field in Mokka database is dumped to a local file as a field map for KalTest.

Figure: ILD magnetic field (Karsten Buesser@ALCW15)

Mean

- Mean of 1/p at different track angle (simulation: 10 GeV track).
- The mean of momentum is shifted by the anisotropic magnetic field.

Resolution

- Momentum resolution at different track angle.
- In this case the momentum resolution is not affected although the non-uniformity is not taken into account in track fitting.

The effective momentum resolution

• If only fixing polar angle, the shift (or bias) of mean contributes to the momentum resolution, so we obtain a bigger effective momentum resolution in the non-uniform magnetic field.

The effective momentum resolution

• The track fitting by the new KalTest can recover the momentum distribution in non-uniform magnetic field

Comparison of track fitting results

By taking field non-uniformity into account, the new KalTest gets consistent track fitting results with the original one for uniform case.

19 / 20

Introduction

- 2 The track fitting algorithm
- 3 Test and performance

Summary

- Algorithm:
 - The algorithm for non-uniform magnetic field is based on Kalman filter;
 - By transforming the track frame, the segment-wise helical track model in KalTest is used and the non-uniformity of magnetic field is taken into account.
- Test results:
 - The updated algorithm can get correct momentum results at the ILD magnetic field;
 - The algorithm has good performance on CPU expense for non-uniform magnetic field.