ILD MDI and Integration Issues

Karsten Buesser

ILD Software and Optimisation Workshop 25.02.2016

ILD Engineering Model

ILD CAD Model

- The ILD engineering model is kept in ILC-EDMS
- Manager of the model is Christian Bourgeois (LAL)
- Combination of different CAD sources to a unified model with help from DESY IPP
- Need to evolve model to keep up with design work in subdetector collaborations
- Have started an initiative to define the interfaces in a more formalised way

ILD Placeholder Model

- There is also a placeholder model of ILD in EDMS
- Should try to synchronise this with the simulation envelopes

- Exercise has been done in 2010, tools to compare Geant4 and CAD models
- Should revive these activities in view of optimisation efforts
 - we probably don't have the resources to keep detailed engineering models of ILD for all optimisation steps

S n envelope

L* and Anti-DID

Forward Region Changes

- ILD had L*=4.4m
- Change Request for L*=4.1m accepted
 - plus additional 10cm for BPM on incoming beam
- Tentative solution:
 - remove vacuum pump (30cm)
 - beam-gas scattering under control (R. Karl)
 - new vacuum solutions under study (LAL)
 - re-design LHCAL/BeamCal
 - work done in FCAL collaboration (S. Schuwalow)
- Need to study:
 - impact on backgrounds (L. Bortko)
 - magnetic field configurations
 - integration scheme with realistic LHCAL

Anti-DID

- Detector Integrated Dipole field was invented by Andrei Seryi and Brett Parker to make the net magnetic field parallel to incoming beams
 - polarisation tuning, reduce emittance growth due to synchrotron radiation
- Turned out that these problems were not as bad and could be corrected without DID
- Then proposed Anti-DID: make net magnetic field parallel to outgoing beam
 - reduce background on BeamCal as low energetic charged background particles are guided to exit hole

BeamCal Layer 8

Forward Region Magnetic Fields

- The magnetic fields that determine the background distribution in the forward regions are complicated overlays:
 - Detector solenoid (fringe) fields
 - QD0 quadrupole (fringe) fields
 - Anti-solenoid (fringe) fields
 - Anti-DID (fringe) fields
- A detailed 3D model of all fields would be needed to do proper background simulations.
- This needs to be done anyhow for the new L* geometries
 - collaboration with machine experts required
 - probably hard to get in view of resources at machine groups...

Parker, Seryi, PR STAB 8.041001

Realistic Anti-DID?

- Technical realisation studied for TDR
 - LC-DET-2012-81
- Conclusion: current field assumed in Mokka (2012) has no technical solution at this time. Need common effort between physics groups and magnet experts.
- We are in discussions with SiD; their preliminary conclusion: Anti-DID in the proposed form as a dipole cannot be built or will be very expensive.
- SiD is even looking into solution with two tilted solenoids
 - would fix the crossing angle forever
- SiD is seriously considering to abandon the Anti-DID

Kircher et al. LC-DET-2012-81

ILD Alignment

ILD Alignment Strategy

- Many parts of ILD have tight alignment requirements
 - e.g. QD0 magnets, LumiCal, Si Tracker, etc.
- Some require alignment systems and those need space
- Reviewing the ILD alignment strategy could be a topic for a joint Integration/Software effort

ILD Inner Detector Alignment

- FCAL collaboration did a study on the alignment of forward calorimeters (LumiCal)
- Laser system couples left and right forward regions
- Lasers need to pass the inner tracking system
 - which needs its own alignment system...

- Engineering solutions exist only on conceptual level, input on material budget not clear

• And we do push-pull: inner detector support would be movable and aligned after each pp cycle

Kitakami Site

Surface ground Buildings and facilities

Slide from Yoshinobu Nishimoto

New IP Location Under Study

- Geological studies showed that there are better locations for the IP
- New location ~4km north of the old one is under study
 - test drilling has been done, results seem to be good
- Possibly more surface space at new location
- No selection done by now, we should work with both IP options for the time being

Slide from Tomo Sanuki

ıki

KITAKAMI Site: Transportation

Slide from Tokiko Onuki

General rule

total weight	trailer/ track	our package	daytime	night	Xpwy	paper work
25 ton	~10 ton	~15 ton	YES	YES	YES	0
44 ton	~20 ton	~24 ton	YES†/ NO	YES	NO	
80 ton	~30 ton	~50 ton	NO	YES	NO	10

[†] Probably "YES", if our package fits into a standard container (W=2,438mm).

Slide from Tomo Sanuki

ILD Assembly (selected examples)

AHCAL Assembly

Kitakami Side

Slide from Karsten Gadow

or anywhere in any detector

AHCAL Assembly

solution: all needed AHCAL parts fit into here

the container fits to standard transport as ships, railways, trucks and through

Slide from Karsten Gadow

t systems	
tunnels	•

AUSSENMASSE			
Längo	mm	6058	
Lange	ft	19' 10 ½"	
Proito	mm	2438	
breite	ft	8′	
Uäba	mm	2591	
none	ft	8' 6"	

GEWICHT		
Tara	kg	2700
Idid	pd	5950
May Zuladung	kg	27780
Max. Zuladung	pd	61250
May Druttagowisht	kg	30480
Max. Druttogewicht	pd	67200

AHCAL barrel integration tools

lifting and turning tool for AHCAL barrel absorber submodules available

- 2 x 18 t capacity
- operation with 2 hooks (z angle adjustment)
- precise motor controlled turning
- design for adaptation for sub-modules with and without sensitive layers started
- mounting, support and insertion frame
 - insertion frame design ready
 - insertion frame support design depends on final yoke size and useable space
- push and pull tool available
 - must be modified to the rail distance and rail shape/size

Karsten Gadow | ILD Topical Integration Meeting | LAL-Orsay 08.010.2015 | Page 8

Slides from Karsten Gadow

AHCAL half barrel absorber installation step 1

Wheel Building in **Assembly Hall** : 8 modules x 5

Transport to Assembly Hall with normal truck - ILD area

- Step 1 : Wheel structure transport (8 travels) & assembly
- Step 2 : Modules transport 40 travels with 11 t
- •Step 3 : Modules assembly on the wheel structure with 100 t crane
 - 8 modules in position on specific tool & screwing/welding

Slide from J.C. lanigro

IPN Lyon

ILD Integration

Building Method

•Step 1 : Modules assembly to wheel

- 8 modules in position on specific tool
- welding / screwing and rotation
- Step 2 : Wheel on specific tool
- Step 3 : Special convoy to Assembly Hall

ILD Building

IPN Lyon

Slide from J.C. lanigro

ILD Integration

Page 7

Building Method

- •Step 1 : Modules assembly to wheel
 - 8 modules in position on specific tool
 - welding / screwing and rotation
- Step 2 : Wheel on specific tool
- Step 3 : GRPC insertion and connected
- Step 4 : Special convoy to Assembly Hall with GRPC inside wheels – ready to be connected

ILD Integration

Heaviest Problem: Iron Yoke

Present Design

Slide from Uwe Schneekloth

Uwe Schneekloth | ILD Yoke Design/Assembly, LAL 2015 | Page 4

Slide from Uwe Schneekloth

Assembly Study

- Try to optimise the ILD assembly in a possible Kitakami scenario
- Biggest uncertainty:
 - where and how to build the coil
- A combined effort between subdetectors, CFS group, ILD integration team is required to come up with a realistic assembly scenario for ILD
- Where can we do what?
 - at vendours/home institutes
 - at central lab campus
 - at IP campus
- This is cost relevant!

Integration Proposal > YB-: production + assembly

> HCAL production for endcaps

One production lane for about 6 months (12 modules)

In parallel: solenoid assembly

In parallel: finalisation of muon installation in YE+ and begin muon installation in YB0 (120 days)

Mounting YE- HCAL

Start YB- yoke assembly once YE-HCAL is ready or assemble YB- wheel in garage

Slide from Thomas Schörner-Sadenius

ILD Assembly Plan

- Goal: one central plan coordinated with subdetectors
- Biggest uncertainty:
 - Coil schedule!
 - Vendours might need considerable R&D time before construction can start
 - and where should it be built? On-site, at vendour?

ſ	#▲	Traits	Title	Given Work	Given Earliest Start	Q2/2015	Q3 / 201
I	0	€0	▼ ILD-Integration		23 Nov 2015		ILD-Ir
I	1		AH ready				
I	2		▼ Yoke assembly				
1	3	ß	 Yoke assembly end-cap -1 				Yoke asse
	41	ß	Yoke assembly end-cap +1				
l	79	Ø	Yoke assembly barrel 0				
I	93	ß	Yoke assembly barrel +1				
l	106	Ľ	Yoke assembly barrel -1				
I	119		 Muon detector installation 				
I	120	ß	Muons installation YE-1	120 days			
I	121		Muons installation YE+1	120 days			
I	122	ß	Muons installation YB0	120 days			
I	123		Muons installationYB +1	120 days			
I	124		Muons installation YB-1	120 days			
	125	Ø	 Solenoid and cryostat assembly 			Solenoid	and cryost
I	126		Coil assembly	850 days			Coi
I	127	ß	Outer vacuum tank	180 days			
I	128		Inner vacuum tank	180 days			
I	129		Coil installation	90 days			
I	130		Coil test	30 days			
I	131	Ľ	Field mapping	30 days			
	132		 HCAL assembly and installation 				
l	133	oľ	HCAL endcap +1		01 Jan 2016		
	134		Sub-module testing and assembly	70 days			
l	135		Installation and services	70 days			
I	136	0	HCAL endcap +1		01 Jan 2016		
l	139	0	HCAL half-barrel A		01 Jan 2016		
	140		Sub-module testing, assembly and installation in half-barrel	70 days			
I	141		Half-barrel Insertion	10 days			
l	142		Outer services	80 days			
I	143		Inner services	70 days			
l	144	0	HCAL half-barrel A		01 Jan 2016		
	145		Sub-module testing, assembly and installation in half-barrel	70 days			
I	146		Half-barrel Insertion	10 days			
	147		Outer services	80 days			
I	148		Inner services	70 days			
	149	Ø	 ECAL assembly and installation 				
I	155	oľ	▼ TPC assembly		01 Jan 2016		
	156	0	Field cage construction	365 days	01 Jan 2016		Field c
I	157		Cathode construction	365 days			Cath
	158		Cathode insertion in field cage	15 days			
	159		Read-out installation in end-plates	90 days			
	160		Electrical tests etc. (and cosmics, read-out,)	180 days			
	161		TPC insertion in YBO	5 days			
	162	~	Lowering of big parts				
	163 164	Θ	Lowering of YBO Lowering of YB-, YB+,	1 day ? 1 day ?	01 Jan 2016		
	405	0	TE-, TE+	0	01 1 0040		
	105	0	FCAL assembly	2 years	01 Jan 2016		
	167	0	FCAL assembly FCAL transportation to AH / IP	1 day ?	or Jan 2016	FCA	L transporta
	168		FCAL lowering	1 day 2			
	169		FCAL insertion	1 day 2			

TSS, February 2016

Risks (a.k.a. the container ship slides)

"MOL Comfort" 17.6.2013 (as shown at LCWS15/Whistler)

Indian Ocean between Singapore and Jeddah

Foto: IANS

Foto: gCaptain

Foto: Indian Coast Guard

Foto: gCaptain

Why should we care?

A Toshiba klystron for the XFEL was on board of this ship....

Foto: Indian Coast Guard

"CSCL Indian Ocean"

- Container vessel of the newest generation 400mx59m
- Ran on ground in the river Elbe (~20 km upstream of Hamburg) on 03.02.2016 ~22:00
- Problems with the steering gear
- Unfortunate: happened during a tide that was higher than normal due to heavy weather in the North Sea

Foto: Havariekommando

Salvage Operation (09.02.2016, ~02:10)

- Third try was successful
- 5 days of preparatory work: dredging the river bed, pumping of ballast water and fuel
- At spring tide, with the help of 12 tug boats (including 2 very large oceangoing tugs)

Salvage Operation (09.02.2016, ~02:10)

- Third try was successful
- 5 days of preparatory work: dredging the river bed, pumping of ballast water and fuel
- At spring tide, with the help of 12 tug boats (including 2 very large oceangoing tugs)

Summary

- A rather detailed engineering model of ILD is kept in EDMS
- A round of updates to this model is required, e.g. implementation of the new forward region
- Tools exist(ed) to compare engineering placeholders with Geant4 geometries
- There are open engineering topics that could have an impact on optimization studies
- The planning for the layout and infrastructure at the Kitakami site is advancing
- Now is the time to provide input from detectors for this process
 - Area and space requirements
 - Infrastructure: power, cooling, computing, etc.
 - Special environments: clean rooms, etc.
- Need to understand the dependencies on local conditions, e.g. transportation limits, on detector assembly and maintenance philosophy
- ILD is working on common installation timeline including planning status of all subdetector collaborations

Detector Infrastructure Workshop at KEK

Mini-Workshop on ILC Infrastructure and CFS for Physics and Detectors

15-16 March 2016 KEK

Asia/Tokyo timezone

Overview

Timetable

Registration

Registration Form

Participant List

Support

karsten.buesser@des...

- Latest news on the IP area, results from test drillings, adaptations of the surface infrastructure to the new site;
- Requirements from ILD and SiD for surface infrastructure: assembly and buffer space, cranes, transportation;
- Detector assembly plans with interdependencies on required infrastructures;
- Common cryogenic facilities;
- Requirements for central lab;
- Review of handshake points between SiD and ILD: magnetic stray field limits, crane usage, cryo, etc.

This Mini-Workshop is dedicated to discussions on the detector driven infrastructure needs for the ILC campus at the IP and at the central lab. Topics to be discussed include: