	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	0

PID Tools

S. Lukić

Vinča institute of nuclear sciences, University of Belgrade

ILD analysis/software workshop 22-26. Feb. 2016

Likelihood PID	Momentum regions	MVA PID	Summary
00	000000	00	

2 LikelihoodPID

Training in different regions of track momentum

4 MVA PID

Intro	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	

Intro

Intro	Likelihood PID	Momentum regions	MVA PID	Summary
•				
Introduct	on			

- Main motivation: improve flavour tagging
- Set of processors and helper classes for PID
- LikelihoodPIDProcessor a Bayesian likelihood classifier with 12 parameters
 - 3 "basic" parameters (total deposits from ECAL, HCAL and muon system)
 - 4 cluster-shape parameters (using shape data written by a separate processor)
 - 5 parameters based on dE/dx in the tracker (data written by a separate processor)
- Helper classes to organise the *hypotheses* and the *data*
- MVA PID processor in development

	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	

LikelihoodPID

Likelihood PID	Momentum regions	MVA PID	Summary
•0			

LikelihoodPID

M. Kurata, feb 2016

- Double Higgs at 500 GeV
- Using as much information as possible (traditional + dE/dx + Shower profile)
- Momentum dependence of PID efficiency

	Likelihood PID	Momentum regions	MVA PID	Summary
	00			
1 1 1 1 1 1 1 I				

M. Kurata, feb 2016

- Double Higgs at 500 GeV
- ID and mis-ID efficiency of pion tracks

	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	0

Training in different regions of track momentum

• Distinction (notably among hadrons) up to (several) 10 GeV

	Likelihood PID	Momentum regions	MVA PID	Summary
		000000		
Momer	ntum denenden	ce of the sensitiv	a variables	

Distributions of (ECAL+HCAL)/p for ranges of p measured in the tracker

Electrons

Also shown the overall distribution from ILD Standard config

Momentum dependence of the sensitive variables

Distributions of (ECAL+HCAL)/pfor ranges of p measured in the tracker

Muons

Also shown the overall distribution from ILD Standard config

Distributions of (ECAL+HCAL)/pfor ranges of p measured in the tracker

Pions

Also shown the overall distribution from ILD Standard config

	Likelihood PID	Momentum regions	MVA PID	Summary
		000000		
Momer	ntum denenden	co of the consitiv	e variables	

Distributions of (ECAL+HCAL)/p for ranges of p measured in the tracker

Kaons

Also shown the overall distribution from ILD Standard config

	Likelihood PID	Momentum regions	MVA PID	Summary
		0000000		
Momer	tum denenden	co of the consitiv	e variables	

Distributions of (ECAL+HCAL)/p for ranges of p measured in the tracker

Protons

Also shown the overall distribution from ILD Standard config

	Likelihood PID	Momentum regions	MVA PID	Summary
		000000		
Momentur	n dependence c	of the sensitive va	riables	

- dE/dx loses relevance at high momenta
- Calorimetric sensitive variables evolve with p higher sensitivity should be possible if measured variables were compared to p-dependent distributions
- Hadrons more difficult to distinguish at high p
- Low-p particles may fail to reach calorimeters

Different sets of hypotheses and parameters for different intervals of measured momentum (but not **very** different!)

	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	

MVA PID

	Likelihood PID	Momentum regions	MVA PID	Summary
			00	
MVA S	Strategy issues			

- Multiple categories
 - different possible ways to proceed
 - Multiple trainings with 2 nodes (example in the following slide)
 - Single ANN with multiple nodes (implementation?)
- Training sample:
 - Single particles for the central analysis-independent reconstruction
 - Physics sample: analysis dependent training by user
- Training processor available to the user

	Likelihood PID	Momentum regions	MVA PID	Summary
			00	
A possible	classification	strategy		

Only particles with associated clusters and with dE/dx > 0 used for training

- Separate training for each hypothesis vs. all others
- Write the result in the form of parameters that can be used to reconstruct probabilities of different particle-type hypotheses for the PFO, e.g.

$$\frac{\int_{x}^{1} f_{s}(x') \, \mathrm{d}x'}{\int_{x}^{1} f_{s}(x') \, \mathrm{d}x' + \int_{x}^{1} f_{b}(x') \, \mathrm{d}x'}$$

0.2

	Likelihood PID	Momentum regions	MVA PID	Summary
0	00	000000	00	

Summary

S. Lukić, ILD analysis/software workshop 22-26. Feb. 2016

	Likelihood PID	Momentum regions	MVA PID	Summary
				•
Summary				

Status

- Likelihood PID advanced
- new processors and features under development

Outlook

- MVA PID:
 - Strategy details to be optimised
 - Minimise number of variables
 - ANN classifier with multiple response nodes? Implementation?
- Benchmark detector performance
 - Impact on flavour tagging (see talk by Masakazu in this session)
 - impact on JER using mass constraints in identified decay chains (see talk by G. Wilson on Tuesday)

Thanks!

S. Lukić, ILD analysis/software workshop 22-26. Feb. 2016