

SiW-ECAL optimisation

Víncent Boudry for the SíW-ECAL group

ILD SW & Optimisation meeting DESY, 24/02/2016

What is (still) needed for ILD ?

Most studies already done, some needs to be refined:

Radius studies with realistic models

<= issue for cost

- Wafers thickness ⇒ Energy resolution
- Lateral granularity (cell size)
 - Dependent on the (HCAL/ECAL correlation) \otimes SW
- Radial granularity (number of layers): to be continued.<= issue for</p>

What about other correlation ?

Threshold studies ?

Timing ?

– Do we have time for time ?

Vincent.Boudry@in2p3.fr

cost

Cost / performance optimisation Current situation (~correct)

	Const ^{ly} refined			New since Sept 2014	
Study	Param.	Details	HCAL		Author
Global	geometr	ic parameters (W thickness ≡ constant); cell size = 5×5mm ²		RMS ₉₀	
	R_{TPC}		AHCAL; SDHCAL AHCAL	single JER	Trong Hieu Tran, LLR Green, Marshall, Thompson, UCAM
		@ constant (R/Half-z)	AHCAL	tau reconstruction	
	Cell size	9	AHCAL SDHCAL	single JER	Green, Marshall, Thompson, UCAM Trong Hieu Tran, Dan Yu, LLR
	Number	of layers @ constant W thickness (not Si thickness)		single JER	Trong Hieu Tran, Dan Yu, LLR
Construction Parameters					
	PCB thi	ckness @ 45.5, 180, 250 GeV		single JER	D. Jeans, Tokyo U.
	Si Guar	d Ring Thickness		(homogeneity) & singe JER	A. Suhail, LAL
@ constant wafer size; unique global correction					
Resilie	nce				
Amount of dead pixels random removal of hits ; unique global correct			tion	single Photons & JER	D. Jeans, Tokyo U.
Raw performances.					
JER on uds events @ 45.5, 100, 250, GeV.					
Separation power (π/γ ; $\gamma-\gamma$, m_{π_0}) $\sigma(E)/E$ (γ); Single γ (3, 10, 100, 500 GeV).				D. Jeans, Green/Thompson, Kostya Shpak	
based on V. Balagura review for the CALIIMAX ANR					
Vincent	.Boudry	@in2p3.fr ILD SiW-ECAL	optiminsation ILI	D SW & Optim WS 2	5/02/2016 3/20

Radius studies with Jets & Tau's

Latest results from T. H, Tran presented on sept 2015

- Paper submitted to EPJC arxiv.org/abs/1510.05224
- Using GARLIC and 3 radii, and B Field

a reduction of the SiW ECAL radius by about 20% and with the same granularity, ILD can still provide a measurement of the π 0 mass with a resolution of better than 10% while the tau reconstruction efficiency degrades compared to the baseline design by at most 2%. The improvement of the efficiency does not justify to increase the magnetic field from 3.5 to 4 T.

Jet Energy Resolution:

presented on sept 2015

Number of rec photons

Reduction of radius degrades significantly the photon identification

Lateral granularity (cell size)

(HCAL/ECAL correlation) \otimes SW:

(PandoraPFA & AHCAL) vs (ARBOR & SDHCAL)

Radius studies with realistic models.

Should we restrict to 3 sizes for realistic simulation ?

SiW-ECAL wafer is a quantum for ILD dimensions

Wafer size standard + Price \Rightarrow cassettes dimensions R from Endcaps, $z_{\frac{1}{2}}$ from Barrel

Make things complicated for simulation to go in step of 26 or 13 cm (1 cassette, ¹/₂ cassette)

 \neq the standard inner—outer onion construction of dimensions (à la Mokka)

 \Rightarrow Cost / Perf optimisation

- Wafers thickness \Rightarrow Energy resolution

(not true for Scintillator opt.)

Realistic parameters: on-going

From preliminary mechanical model \Rightarrow in simulation & cost

- Reduced radius R_{INNER}= ~1600 and~ 1400mm.
- Base unit = Wafer size
 - Largers Wafers: $6^{"} \rightarrow 8^{"}$ (OK from HPK, LFoundry); smaller wafers (4") in 2nd part ?
 - Wafer side: $\sim 90 \rightarrow 126-130$ mm; Alveola ~ 200 mm $\rightarrow 253,8$ mm 263 mm (132.3 mm for single SLAB)

Barrel: 5 modules of 3 alveola

- L_{Barrel} = 3829mm (Z_{endcap} = 3929mm).

Endcaps: Quadrants of 2 modules of 2 and 3 alveola

- with R(ECAL Ring) = 40cm + Integer number of Wafers + ¹/₂ Wafers
 - \Rightarrow R_{Endcap} = 1676mm
- N_{layers} = 22 = **14 + 8** (single and double W thickness)
- Wafer thickness $500 \rightarrow ~725 \mu m$
 - Improved $\sigma(E\gamma) \propto 5\sqrt{t} \Rightarrow \sim recovery of N_{layers}$ effect. \Rightarrow compensation of N_{Layer} loss.
 - ECAL thickness = 223,85 mm

Vincent.Boudry@in2p3.fr

ILD SIW-ECAL optiminsation | ILD SW & Optim WS | 25/02/2016

Preliminary numbers (and not necessarily consistent) Enginering plans on-going

Geometry studies Henri Videau

Vincent.Boudry@in2p3.fr

Geometry of endcaps

Magic numbers for limited types of wafers

> - linked with size of the ECAL Ring. $(\Leftrightarrow QD0 \text{ size})$

Vincent.Boudry@in2p3.fr

Example of geometry

Model 3 (~1400mm) + Model 1 (~1600mm)

Preliminary numbers Enginering plans on-going

Vincent.Boudry@in2p3.fr

Internal structure with reduced number of layers

Simulation modifications Slide from Sept 2014

Cleaning & adapatation of ECAL Mokka drivers: [D. Jeans + J. Marshall + E. Becheva + V. Boudry + Dan Yu]

- − Many cleaning made by D. Jeans \Rightarrow SECal05
 - Bugs, improved GEAR output, handling of pre-shower
- Documentation being reviewed
- TBD: Implementation of SEcal05 in DDHEP (based on S. Lu implementation of SEcal04 + tests)
 - Done for CLICdp by D. Protopopescu & M. Petric Needs to be review / adapted for ILD vs SECal04

New ECAL Driver (SEcal06) to correct defects (mostly in Endcaps).

- Missing dead materials, "corners"
- Consistant treatment of Barrel/Endcaps
- Better handling of Layers, optionnal pre-shower

Vincent.Boudry@in2p3.fr

Timing ?

CMS-HGCAL and ATLAS-HGTD are investigating precise time for vertex separation

- 50ps timing precision for single cells
- ~ ~ 10 ps for EM shower
- electronics (CEA / Omega) is being developped for this
- Benefits in terms of PFA?
 - Certainly in HCAL
 - in SiW-ECAL?

But do we have time for time ?

Vincent.Boudry@in2p3.fr

Conclusions

Most studies done with «flexible models» of sim.

- Fine for barrel, be aware of $|\cos\theta| > 0.7$
- Correlations and holes to be scanned for... (+ threshold, wafer thickness)
- Lower radius models being looked at
 - Engineering "safe" in barrel-endcap region
 - Larger wafers wrt to baseline,
 - Thicker wafers
 - Study of 725µm vs 500µm vs 320µm needs to be completed
 - Calculations "almost" there...

Simulation needs to be adapted (with model in DDSIM)

...Timing...

Vincent.Boudry@in2p3.fr

Extras

Vincent.Boudry@in2p3.fr ILD SiW-ECAL optiminsation | ILD SW & Optim WS | 25/02/2016

Variation of N_{Layers}

Shown @ 6th ILD Optim meeting (16/07/2014) [Internship work of Dan Yu (LLR)] https://agenda.linearcollider.org/getFile.py/access?contribId=2&resId=0&materialId=slides&confld=6435

- Variation of ECAL's N_{Layers} for R=1450mm, HZ_{Barrel}=1848mm on ILD_o2_v05
- Exact Same procedure as previous study
 - Non-Linearity $\leq 1\%$
- For |cosθ| ≤ 0.7
- Results
 - JER + ≤6% @45 GeV

Vincent.Boudry@in2p3.fr

Single jet energy resolution as a function of the thickness of PCB with embedded electronics.

Single photon energy resolution as a function of the number of silicon layers for four photon energies.

ILD jet energy resolution in the barrel reprint [[[ansn]] < 0: 7 as a

ILD SIW-ECAL optiminsation | ILD SW & for ginn prives a pizes/02/2016

Guard Ring studies

An ECAL average signal versus azimuthal angle. The loss in inter-sensor dead areas is visible (between barrel modules, barrel and endcap

and between the sensors, the latter depends on the guard ring).

the single jet energy resolution after a simple dependent correction as a function of the guard ring thickness.

Resilience

Vincent.Boudry@in2p3.fr

· · · · -