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LCFIPLUS IMPROVEMENT

Flavor tagging is one of the most important analysis tools

DBD LCFIPlus, which is a flavor tagging module, has been
successful

We need to go to next step, flavor tagging improvement

There is much room to improve!

Now, focusing on
Vertex finding efficiency improvement itself
Flavor separation in the case of Ovtx jet(do not mention in this talk)

Vertex Mass Recovery using piOs

Particle ID is one of the key to flavor tagging improvement

Pi0 reco. is other key for vertex mass recovery



ADAPTIVE VERTEX FITTING
To introduce the effect of multi—vertex fitting
Introduce weight function to estimate vertex which a track belongs to
Weight function definition: k—th track’ s weight on n—th vertex
e~ Xn1/2T
—x2,./2T N =3 /2T
Parameter: tempera’iure T " Z?:I )

If T very small, decision is like X 2 minimization(almost same as DBD LCFIPIlus)
If T large, multi—vertex effect becomes large

In multi—vertex environment, weight on

Wnk =

certain vertex will degrade Weight of track "k~ on vertex 'n
N 1 T T
—becomes harder to attach tracks to vertices || ) T
. . . ! Y™ | —— 721 |
in multi—vertex environment T \ 104

—can reject fake tracks well! 9N When vertex |“i” exists

nearby and chi2=1.0
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Thanks to weight function, we can loosen

s 1
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the track quality selection X2 on vertex “n”

—vertex finding eff. will be improved!
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IMPACT OF ADAPTIVE VERTEX FITTING
Common parameters are set at same values for comparison

Same event sample(qgHH sample@500GeV) 19889 events
6 jet clustering, jet matching with MCtruth is performed

Num. of jets with vertex:

DBD LCFIPIlus 10586 9111 12844 32541
AVF 13179 6360 13373 32914

Total jets with vtx: ~1.1% increased

Jets with 2vtx: “21% increased — good for bjet ID!

Jets with 1vtx: ~3% increased — good for uds jet separartion!
Fake track rate per vtx: how many fake tracks contaminate on
vertices?

Almost same — slightly better!

DBD LCFIPlus 0.02920.001 0.013=0.0012 0.058*0.002
AVF 0.028=0.001 0.008 =0.0008 0.0580.002



VERTEX FINDING OF C JETS
Common parameters are set at same values for comparison

Same event sample(nnH sample@500GeV) 99432 events

H—cc: 6461 events
2 jet clustering, jet matching with MCtruth is performed

Num. of vertices

DBD LCFIPlus 48 149 6261 6458
AVF 99 141 6327 6927

Total: ~1% increased
Vertex mis—ID eff. is increased(but, 2vtx jet has pure vertices)

Though num. of vertices is small

—need additional selection for singletrk? (e.g.)vertex mass?)

Fake track rate per vtx:

BDB LCFIPlus 0.00==0.00 0.012=2-0.006 0.0014=20.004
AVF 0.002=0.00 0.018=0.007 0.0013=0.004



VERTEX MASS RECOVERY
Using pi0s which escape from vertices

Need to choose good pi0 candidates —construct pi0 vertex finder

Key issue —pi0 kinematics, very collinear to vertex direction

Higgs Coupling Analysis
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Different particle patterns have different vertex mass patterns

Construct Pi0 Vertex finder
using MVA

Identify which vertex piOs are coming from
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VTX MASSES OF BJETS IN DOUBLE—HIGGS PROCESS
Vix mass distributions for each vertex pattern(ntrk)
These results are the outputs of LCFIPlus(unofficial ver.)!

Difference is limited by mis—pairing of gammas(eff. ~50%) and mis—
attachment of piOs

Need better gamma pairing!
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VERTEX MASS RECOVERY EFFECT ON FLAVOR TAGGING
Construct a “toy’ flavor tagger

Input variables are obtained from LCFIPlus

Input variable selection is too primitive!

Only vertex mass is replaced to recovered vertex mass
Compare with ROC curve
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JET CLUSTERING WITH BEAM BACKGROUND REJECTION
Now in LCFIPlus, Valencia jet clustering is available!

We also include Durham jet clustering with beam b.g. rejection

Assumed very large energy jet exists in beam direction

Compare the performance between Durham, Kt and Valencia
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PROSPECTS FOR JET CLUSTERING
Jet clustering is the most important problem to obtain good

physics results in jet—related analysis

But, it is very difficult because the cause of mis—clustering is
extremely complicated

Can we obtain better jet clustering?
Check possibility:
Using Self—-Organized Map(unsupervised neural network)

Can obtain better Higgs mass resolution(qgHH@500GeV)

Same phenomena can be seen in top events(top mass resolution)

But not enough(only raughly~4% improvement in signal significance)
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SUMMARY AND PROSPECTS

For flavor tagging improvement:
New vertexing algorithm(AVF) will provide better vertex finding efficiency
BNesstagger will give some improvement for Ovtx jet flavor separation
There seems hope for attaching piOs to vertices to recover vertex mass

So far, AVF will provide ~1% improvement of vertex finding in bjets
Jets with 2vtx well increased — better for b jet ID!
Fake rejection will be same — slightly better!
This study will lead to vertex charge assignment improvement

Vertex mass recovery is reasonable
Will provide better flavor tagger using recovered vertex mass
PiO reco. Improvement will give better vertex mass recovery!

Valencia jet clustering has been included
We need to tackle jet clustering problem

Finally, incorporate all the ideas and check the final flavor tagging
effs.in LCFIPIlus!



© BAcK upPs
®




TRACK MVA(BNESS)

o To identify track which comes from heavy flavor particle
—using MVA
» Signal: tracks which come from B mesons or B baryons

» Background: tracks produced in hadronization process

o Most significant tracks with both plus and minus signed impact
parameters in a jet are collected

» Significance: sig = \/(%)2_'_(%)2
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BNESS TAGGER

Flavor separation of Ovtx jet is most difficult situation

Only impact parameter implies the existence of secondary vertices for
flavor separation

BNess tagger will be worth trying in this case!
Developed in CDF
Focus on individual tracks and evaluate jet flavor only using single track

Track’ s potential for coming from heavy flavor particle(D&B meson and
baryons) should be evaluated(using MVA)

Difficulty in ILC

In CDF, it is important to separate b and other flavor — ¢ quark
separation is not required

In ILC, separation among b, ¢ and other is very important— bc separation
is a key for flavor tagger

How is bc separation using BNess tagger?



BNESS OUTPUT

o0 Collect Highest score BNess track in Ovtx jets
o Final BNess is defined as BNess(bl)+ BNess(bc)
o Well separated between bjets and | jets

o Difference can be seen between bjets and cjets
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VTX MASSES

Vix mass distributions for each vertex pattern(ntrk)

not so bad

Difference is coming from mis—pairing of gammas and mis—attachment

of pi0s

Higgs Coupling Analysis
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RESULTS OF BNESS TAGGER ON FLAVOR TAGGING

Construct a “toy’ flavor tagger

Convert nominal input variables to BNesstagger variables
Compare with ROC curve
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BNESS TAGGER FOR FAKE TRACK REJECTION

Loosen the track selection to try to attach as many tracks as
possible to vertices

Fake track rate will be increased

To reject fakes, BNess tagger is used
So far, just use BNess(bl)
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P10 RECO USING NAIVE BAYES FOR VERTEX MASS RECOVERY
0 Good pairing eff. & mis—pairing eff.

| Gorrect pair | Wrong pair _

54.00.4

eff. (%) 46.0%0.3

o Kin. plots of pi0 reco. results
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