Granularity and Energy Resolution

Katja Krüger, Coralie Neubüser, Felix Sefkow, Huong Lan Tran

ILD software and optimisation workshop DESY, Feb 25, 2016

- Introduction: effects of granularity
- Reconstruction schemes for single particles and software compensation
- Energy resolution and granularity
- AHCAL optimisation
- Studies done at DESY, in co-operation with **Argonne**, **Cambridge** and **CERN**
 - see also talks by S.Green and H.L.Tran

Energy and Granularity

• A central theme in jet calorimetry since the times of H1 and ZEUS

"Energy resolution is everything!"

Energy and Granularity

• A central theme in jet calorimetry since the times of H1 and ZEUS

Particle flow performance

- Separating the energy depositions of individual particles requires high granularity
- Calorimeter resolution still does matter
 - dominates for jets up to $\sim 100 \text{ GeV}$
 - contributes to resolve confusion

i) Photons

Pattern recognition based on topology **and** energy

ii) Neutral Hadrons

Failure to resolve neutral hadron

M.Thomson, Nucl.Instrum.Meth. A611 (2009) 25-40

iii) Fragments

Reconstruct fragment as separate neutral hadron

Make your choice...

Calorimeter cost

- Yet, many lessons learnt from 2nd generation prototypes
- Example ILD scint HCAL: 45M
 - 10M fix, rest ~ volume
 - 10M absorber, rest ~ area (n_{Layer})
 - 16M PCB, scint, rest ~ channels
 - 10 M SiPMs and ASICs
- HCAL cost is rather driven by instrumented area then by cell size
- ECAL cost driver: silicon area
 - Still, high granularity drives the design and needs to be justified

[•] Costing is at a very early stage

- Gaseous HCAL with **analogue** readout would have poor resolution
 - small sampling, large Landau fluctuations
- **Digital** calorimeter idea: count particles, ignore fluctuations
 - 1cm² cells: saturate above 30 GeV
- **Semi-digital** idea: mitigate saturation using several thresholds and weights
 - assumes signal prop. to E deposition

e energy) VS energy

HCAL with **analogue** readout ve poor resolution sampling, large Landau fluctuations alorimeter idea: count particles, ictuations

cells: saturate above 30 GeV

jital idea: mitigate saturation 'eral thresholds and weights

es signal prop. to E deposition

e energy) VS energy

HCAL with **analogue** readout ve poor resolution sampling, large Landau fluctuations alorimeter idea: count particles, ictuations

cells: saturate above 30 GeV

jital idea: mitigate saturation 'eral thresholds and weights

es signal prop. to E deposition

Felix Sefkow DESY, February 25, 2016

Initial choices

- Analogue:
- 3cm x 3cm at ~ 3cm sampling pitch
- corresponds to Molière radius and X₀; hadron shower sub-structure scale
- small effect on plain energy response and resolution, only via threshold
- more direct effects when software compensation methods are applied
- Digital:
- 1cm x 1cm at ~ 3cm sampling pitch
- to limit saturation effects
- affects single particle linearity and resolution directly

Felix Sefkow DESY, February 25, 2016

Event displays: Analogue HCAL

- pions 80 GeV
- W absorber
- 3cm scintillator + SiPM

Event displays: Analogue HCAL

- pions 80 GeV
- W absorber
- 3cm scintillator + SiPM

Event displays: Analogue HCAL

- pions 80 GeV
- W absorber
- 3cm scintillator + SiPM

Semi-digital RPC HCAL

- pions 80 GeV
- Fe absorber
- 1 cm RPC, 3 thresholds

Analogue and (semi-) digital reconstruction of single hadrons

AHCAL and SDHCAL

- Scint and gas prototypes differ in medium, cell size and read-out scheme
- All of them affect single hadron and jet energy resolution
- Disentangle with validated simulations, and optimise, incl. s/w comp

AHCAL and SDHCAL

- Scint and gas prototypes differ in medium, cell size and read-out scheme
- All of them affect single hadron and jet energy resolution
- Disentangle with validated simulations, and optimise, incl. s/w comp

(Semi-) digital reconstruction of AHCAL

- Update of CAN-049 in preparation
 - optimise semi-digital weights, add software compensation

Felix Sefkow DESY, February 25, 2016

Simulate smaller granularities

- Simulate with same degree of realism as in AHCAL test beam
 - except noise (not an issue with present SiMs)
 - and adjust threshold in order to obtain similar linearity
- Apply digital and (reoptimised) semi-digital reconstruction
- Differences between gas and scintillator to be understood
 - validated simulations on their way

Simulate smaller granularities

- Simulate with same degree of realism as in AHCAL test beam
 - except noise (not an issue with present SiMs)
 - and adjust threshold in order to obtain similar linearity
- Apply digital and (reoptimised) semi-digital reconstruction
- Differences between gas and scintillator to be understood
 - validated simulations on their way

Software compensation

- Electromagnetic showers: higher density, larger response
- Software compensation: weight has according to cell energy

Analogue and digital w

entries -

 10^{6}

10⁵

10⁴

 10^{3}

 10^{2}

- Analogue: $E_{rec,SC} = \sum_{i} \omega_{SC,i} \cdot E_{i}$ $\omega = \omega(E_{i}, E_{tot})$
- Semi-digital: $E_{rec,semi-digital} = \alpha \cdot N_1 + \beta \cdot N_2 + \gamma \cdot N_3$ a =
- Counting is equivalent to weighting with $1/E_{hit}$: $\omega = a/E$
- Use common formalism and learn from each other

Read-out scheme and resolution

- vary number of binsand energy dependence within bins
- small differences once some weighting is applied

Granularity and Energy Resolution

Read-out scheme and resolution

- vary number of binsand energy dependence within bins
- small differences once some weighting is applied

Granularity and Energy Resolution

- 1x1: semi-digital as good as analogue with s/w comp
 - 2 bits are enough
- 3x3: analogue with s/w comp better than SD, as good as 1x1
 - for analogue readout 3x3 is enough

- 1x1: semi-digital as good as analogue with s/w comp
 - 2 bits are enough
- 3x3: analogue with s/w comp better than SD, as good as 1x1
 - for analogue readout 3x3 is enough

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects done
 - improve cluster energy estimators for track-cluster association on its way
 studies with Pandora PFA

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects done
 - improve cluster energy estimators for track-cluster association on its way

studies with Pandora PFA

- Jet energy resolution is the goal
- In principle can be fit in two-fold way: $\omega(\rho) = p_1 . exp(p_2.\rho) + p_3$ for neutral objects - done
 - improve cluster energy estimators for track-cluster association on its way

0.05 Work in progress Huong Lan Tran, DESY 20 40 60 80 100 Eini [GeV] studies with Pandora PFA

- Jet energy resolution is the goal
- In principle can be fit in two-fold way: $\omega(\rho) = p_1 \cdot exp(p_2 \cdot \rho) + p_3$ for neutral objects - done
 - improve cluster energy estimators for track-cluster association on its way

s/w compensation and clustering

- Hypothesis testing at re-clustering stage
 - use track energy
 - benefits demonstrated earlier (fractal dim.)
- However: Weighting the energy before or during the clustering stage of particle flow reconstruction is not straightforward
 - In general $\omega = \omega(E_i, E_{tot})$
 - Easy only for truncation
- General issue for all weighting schemes, inevitable for digital and semi-digital reconstruction
- Non-linear response: cannot revert to plain E flow in dense environments
 - $\omega E_1 + \omega E_2 \neq \omega (E_1 + E_2)$

• 3 cm still a very reasonable choice

Granularity and Energy Resolution

• 3 cm still a very reasonable choice

- fewer layers: not for free, but at least no knee
- not necessarily the same for SDHCAL

Cost optimisation: depth

- this plot n(layers) = const; should have constant pitch also
- additional savings from coil and yoke or smaller reduction
- but should be studied with missing energy performance

Cost optimisation: inner radius

- shown: cost variation is for 18 cm smaller HCAL inner radius
- additional savings from coil and yoke or smaller reduction

Conclusion

- We are getting close to collecting the remaining pieces for the complete picture
- Still some way to finalise these studies
- More to come:
- Scintillator and gaseous comparison
 - finalise data and simulation
- Timing cuts for energy reconstruction and pattern recognition
- Integration of ARBOR and its new algorithms
- Cost optimisation: from HCAL point of view smaller radius is safest way

Back-up slides

Granularity optimisation

- Based of Pandora PFA
- Large radius and B field drive the cost
- Both ECAL and HCAL segmentation of the order of X₀
 - longitudinal: resolution
 - transverse: separation
- Cost optimisation to be done

