

Characterization and performance of large thin DEPFET detectors

C. Marinas
University of Bonn

DEPFET Collaboration

The DEPFET Module

DCDB (Drain Current Digitizer) Analog frontend

UMC 180 nm Size $5.0 \times 3.2 \text{ mm}^2$ TIA and ADC Pedestal compensation Rad. Hard proved (20 Mrad)

DHP (Data Handling Processor)
First data compression

TSMC 65 nm
Size $4.0 \times 3.2 \text{ mm}^2$ Stores raw data and pedestals
Common mode and pedestal correction
Data reduction (zero suppression)
Timing signal generation
Rad. Hard proved (100 Mrad)

PXD9 DEPFET Sensors

Hybrid 5 – Full System Demonstrator

- PXD9 small Belle II type matrix
 - Pixel pitch: 50x55 μm²
 - Thinned to 75 μm
 - Gate length: 5 μm
 - Thin gate oxide
 - 32x64 pixels readout
- Final readout chain
 - SwitcherB
 - DCDB
 - DHPT
 - DHPT \rightarrow DHH
- DESY Nov 2015:

First Belle II type matrix in a test beam

Hybrid 5 – ASIC Optimization

- Drain Current Digitizer (DCD):
 - Uniformity and linearity of ADCs
- Data Handling Processor (DHP):
 - High speed link settings
 - Steering sequences
 - Signal timing
- Interchip communication

Hybrid 5 – Sensor Optimization

- Optimization of DEPFET voltages
 - Source measurements

Hybrid 5 – Sensor Optimization

- Optimization of DEPFET voltages
 - Source measurements
 - Laser measurements

- Laser focused through microscope
- ~3 μm spot size
- Laser moves over matrix position resolution

First Sanity Checks

- Correlations with the telescope
- Beam spot with 4 GeV electrons
- Landau peak
- → Successful integration within few hours time

Belle II PXD Signal

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET Clusterizer
- $g_a = 740 \pm 50 \text{ pA/e}^{-1} \text{ measured}$

Belle II PXD Signal

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET Clusterizer
- $g_q = 740 \pm 50 \text{ pA/e}^{-1} \text{ measured}$

Belle II PXD Cluster Size

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET Clusterizer
- $g_q = 740 \pm 50 \text{ pA/e}^{-1} \text{ measured}$

Belle II PXD Residuals

- Matrix tilted along column: multi-column clusters
- Expectation for single pixel readout: RMS = $50 \, \mu m / \sqrt{12} \approx 14.5 \mu m$

Belle II PXD Residuals

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET Clusterizer
- $g_q = 740 \pm 50 \text{ pA/e}^{-1} \text{ measured}$

Belle II PXD Efficiency

- Zero Suppression Cut = 5 ADU (~1000 e⁻)
- 2 noisy (masked) pixels
- Noise occupancy on level ~10⁻⁵

Belle II PXD on Hybrid 5 - Summary

November 2015 test beam:

- First time to see MIPs with PXD9 Belle II thin sensors
- Well trained team: systematic studies and obtain huge statistics
- Results are satisfactory, as expected by design and also according to simulations:

Charge collection

Cluster size

Residuals

Efficiency

→ Not mentioned here: Irradiation campaigns, stability tests, other test vehicles

Belle II Vertex Detector

Belle II Tracker – Combined Test Beam

- VXD common test beam in April 2016 (4 weeks)
- Small sector of the final sensors and ASICs*
 2 PXD + 4 SVD layers
- Complete DAQ readout chain: HLT, event building
- CO₂ cooling, slow control, monitoring, environmental sensors
- Illumination with (up to) 6 GeV e⁻ under 1T solenoid magnetic field (PCMAG)
- Alignment, tracking algorithms, ROI

Goal: System integration and Phase 2 Commissioning

Test Beam Set Up

- Two PXD and four SVD layers
- Horizontal plane (highest background sensitivity)

Test Beam set up to mimic commissioning detector arrangement

DAQ Structure

PXD Hit Maps

Threshold = 5 (~ 1200 electrons)

Inner Backward

Trigger on 4 scintillators Collimated beam No magnetic field

Outer Backward

PXD Signals

SNR ~ 32 for perpendicular incident MIPs

Landau MPV

- The response from the matrix is rather uniform even without tuning. Modules just worked using operating parameters from Hybrid 5
- There is lot of room for improvements with better optimization of voltages and ASICs

PXD Residuals

Online Data Reduction

Online Data Reduction

Online Data Reduction

PXD Environmental Monitoring

Main Achievements

- Detectors fully operational: 'Final' Phase 2 hardware
- Hitmaps as expected in all layers. SNR OK
- PXD residuals according to specs
- Interdetector correlations (mapping and timing)
- Online data reduction
- 7 kHz 'artificial' trigger rate for 1 hour
- Few hours 2 kHz steady data acquisition
- Alignment
- Noise immunity studies → No interference observed
- Start/Stop fully controlled by master Run Control
- Environmental monitoring mostly integrated into EPICS
- Operation under realistic environmental conditions (CO₂ @ -27 °C)

The SuperKEKB Accelerator

→ The fun is about to start!

