Direct and indirect BSM searches at \sqrt{s} > 500 GeV

Philipp Roloff (CERN)

ECFA Linear Collider Workshop 2016, Joint ILD/SiD/CLICdp session on physics benchmark analyses

Santander (Spain), 03/06/2016

BSM at \sqrt{s} > 500 GeV

eV

380 GeV

1.5 TeV

3 TeV

Reminder: CLIC energy stages

CLIC would be implemented in several energy stages

Current baseline scenario:

(each stage corresponds to 5 - 7 years incl. luminosity ramp-up)

Philipp Roloff

 \rightarrow The strategy can be adapted to possible LHC discoveries at 13 TeV!

Beyond Standard Model searches

1.) Direct observation of new particles (e.g. pair production if $M \le \sqrt{s} / 2$): \rightarrow Precision measurement of new particle masses and couplings

2.) Indirect searches through precision observables \rightarrow Possibility to reach much higher mass scales

Best discovery reach for highest energy in both cases

- Very rare processes accessible due to low backgrounds \rightarrow linear colliders especially suitable for electroweak states
- Polarised beams might be useful to constrain the underlying theory

Direct searches

SUSY studies at CLIC

Reconstruction of SUSY particles

Complex final states:

 $\begin{array}{c} e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to HA \to b\overline{b}b\overline{b}\\ e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to H^{\scriptscriptstyle +}H^{\scriptscriptstyle -} \to t\overline{b}b\overline{t} \end{array}$

≈ 0.3% precision on heavy Higgs masses

03/06/2016

Philipp Roloff

Summary of the SUSY studies

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0	Sleptons	$\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\widetilde{\ell} \text{ mass} \ \widetilde{\widetilde{\chi}}_{1}^{0} \text{ mass}$	1010.8 340.3	0.6% 1.9%
		$\widetilde{e}^+_R \widetilde{e}^R \to e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	II	ℓ mass $\widetilde{\chi}_1^0$ mass	1010.8 340.3	0.3% 1.0%
		$\widetilde{\nu}_{e}\widetilde{\nu}_{e}\rightarrow\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		$\widetilde{\ell}$ mass $\widetilde{\chi}_1^{\pm}$ mass	1097.2 643.2	0.4% 0.6%
3.0	Chargino Neutralino	$ \begin{array}{l} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	II	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^0$ mass	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ι	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$egin{array}{l} H^0 A^0 & ightarrow b \overline{b} b \overline{b} \ H^+ H^- & ightarrow t \overline{b} b \overline{t} \end{array}$	Ι	${ m H^0/A^0}\ { m mass}\ { m H^\pm}\ { m mass}$	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{e}_{R}^{-} \widetilde{e}_{R}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	III	$\widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} $	560.8 357.8 558.1 357.1 644.3	0.1% 0.1% 0.1% 0.1% 2.5%
		$\nu_e \nu_e \rightarrow \chi_1 \tilde{\chi}_1 e^+ e^- W^+ W^-$		$\widetilde{\chi}_1^\pm$ mass	487.6	2.7%
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino Neutralino	$ \begin{array}{l} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	III	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^0$ mass	487 487	$0.2\% \\ 0.1\%$

03/06/2016

Philipp Roloff

$e^+e^- \rightarrow \gamma + E^{miss}$ at high energy

• Need to study the potential of single photon events with missing energy also at high energy

 Recent improvements in PandoraPFA photon reconstruction will help
 → see talk by Boruo Xu

 If a signal is confirmed over the e⁺e⁻ → vvγ background, try to extract mass, spin and coupling structure

• Control of systematics crucial: luminosity spectrum, polarisation measurement, background calculations,

Indirect searches

Precision study of $e^+e^- \rightarrow \mu^+\mu^-$

BSM at \sqrt{s} > 500 GeV

03/06/2016

Philipp Roloff

BSM at \sqrt{s} > 500 GeV

11

Precision study of $e^+e^- \rightarrow \gamma\gamma$ (1)

New physics searches with ee $\rightarrow \gamma \gamma$: deviation from QED expectation

Simplest Ansatz: QED cutoff parameter Λ (other interpretations possible: excited electrons, ...)

Events with small energy loss due to Beamstrahlung and ISR are selected

→ two back-to-back photons

Most critical background: $e^+e^- \rightarrow e^+e^-$

Precision study of $e^+e^- \rightarrow \gamma\gamma$ (2)

Fit result: $\Lambda > 6.33$ TeV (or electron size < 3.1 x 10⁻¹⁸ m)

Combined LEP data: $\Lambda > 431$ GeV

Vector boson scattering (1)

 Vector boson scattering is sensitive to new physics in the Higgs sector

• Search for additional resonances or anomalous couplings

- Study on generator level (WHIZARD 2.2.8)
- Assuming performance for separation of hadronic W and Z decays predicted by full simulation
- Backgrounds with electrons in fiducial regions of BeamCal and LumiCal rejected
- Cuts used to suppress background processes

Differential cross sections

Figure: Differential cross sections depending on the transverse momentum of the W boson pair at $\sqrt{s}=3000\,{\rm GeV}.$

Christian Fleper, CLIC Workshop 2016

03/06/2016

Philipp Roloff

Vector boson scattering (2)

Theoretical CLIC values

$$-40 \, {
m TeV^{-4}} < F_{S,0,1} < 40 \, {
m TeV^{-4}} \, (1400 \, \, {
m GeV}) \ -7 \, {
m TeV^{-4}} < F_{S,0,1} < 7 \, {
m TeV^{-4}} \, (3000 \, \, {
m GeV})$$

Latest ATLAS analysis G. Aad et al.: arXiv:1405.6241

 $-461 \,\mathrm{TeV^{-4}} < F_{S,0} < 527 \,\mathrm{TeV^{-4}} \\ -758 \,\mathrm{TeV^{-4}} < F_{S,1} < 791 \,\mathrm{TeV^{-4}}$

CLIC at 3 (1.4) TeV roughly two (one) orders of magnitude more precise than LHC at 8 TeV

Study based on full detector simulation starting

- \rightarrow Several interesting experimental challenges including:
- Reconstruction and separation of hadronic W and Z boson decays
- Missing momentum reconstruction in the presence of beam-induced backgrounds
- Forward electron tagging to reject backgrounds

Summary and conclusions

• A linear collider operated at high-energy provides significant discovery potential for BSM phenomena

• Measurement of the gaugino, slepton and heavy Higgs masses with O(1%) precision up to the kinematic limit (M \approx 1.5 TeV)

• Single photon + missing energy events allow model-independent searches for dark matter candidates (complementary to LHC)

• Sensitivity to New Physics at large scales (tens of TeV) through precision measurements (examples: Z' from fermion pair production, $e^+e^- \rightarrow \gamma\gamma$, vector boson scattering)

Backup slides

The simplest case: sleptons at 3 TeV

- Slepton production very clean at CLIC
- Slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \end{split}$$

 Masses from endpoints of energy spectra

Precisions of a few GeV achievable

Hadronic final states: gauginos at 3 TeV

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Philipp Roloff

Heavy Higgs bosons at 3 TeV

Heavy Higgs bosons:

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (H, A and H[±] almost degenerate in mass) Complex final states

Accuracy of the heavy Higgs mass measurements: ≈0.3%

03/06/2016