Electro-weak couplings of the top quark

G. Durieux (DESY), I. García, <u>M. Perelló Roselló</u>, M. Vos (IFIC - U. Valencia/CSIC), C. Zhang (BNL)

Acknowledging input/contributions from:

M. Boronat, J. Fuster, P. Gomis, E. Ros (IFIC - U. Valencia/CSIC)

R. Pöschl, F. Richard (Orsay, LAL)

F. Maltoni, E. Vryonidou (Louvain U., CP3)

Introduction

- Top quark precision measurements have never been done in a lepton collider.

 - Some models BSM have strong couplings to the top quark which provide a great sensitivity to high energy scales. Two approaches for top quark couplings:
 - · Form-factors scheme.
 - Effective operators scheme from an EFT.
- This brings a great opportunity to provide a bright window to new physics.

•

•

Status of form-factors scheme

Assume production is dominated by SM and NP scale is beyond direct reach.

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Form-factors: CPV

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Observables:

$$O_{+}^{Re} = \left(\hat{q}_{+}^{*} \times \hat{q}_{\bar{X}}\right) \cdot \hat{e}_{+}$$
$$O_{+}^{Im} = -\left[1 + \left(\frac{\sqrt{s}}{2m_{t}} - 1\right)\left(\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\right)^{2}\right]\hat{q}_{+}^{*} \cdot \hat{q}_{\bar{X}} + \frac{\sqrt{s}}{2m_{t}}\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\hat{q}_{+}^{*} \cdot \hat{e}_{+}$$

These observables have **simple relations to the four F2A form factors**:

$$A_{\gamma,Z}^{Re} = \langle O_+^{Re} \rangle - \langle O_-^{Re} \rangle = c_{\gamma} [PRe(F_{2A}^{\gamma}) + KZRe(F_{2A}^{Z})]$$

$$A_{\gamma,Z}^{Im} = \langle O_+^{Im} \rangle - \langle O_-^{Im} \rangle = d_{\gamma} [Im(F_{2A}^{\gamma}) + PKZIm(F_{2A}^{Z})]$$

Paper of LC potential in the CPV sector in preparation (IFIC-LAL collaboration)

Quantity	$Re[F_{2A}^{\gamma}]$	$Re[F_{2A}^Z]$	$Im[F_{2A}^{\gamma}]$	$Im[F_{2A}^Z]$
SM value at tree level	0	0	0	0
LHC	0.12	0.25	0.12	0.25
TESLA TDR	0.007	0.008	0.008	0.010
ILC $@500 \text{ GeV}$	0.007	0.011	0.007	0.012
CLIC@380 GeV	0.009	0.013	0.008	0.016

Effective field theory

Alternative to form-factors: describe BSM effect through effective D6 operators.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

- More fundamental representation.
- We can connect different physics processes with the same operators (for instance the tt production and the top quark decay share some operators).
- These measurements can be done in the LHC too, so we can compare LHC and LC measurements easily.
- An effective theory allows the **study of contact interactions**.

EFT: 2-fermion operators

Alternative to form-factors: Integrate out explicit mediators and describe BSM effect through effective D6 operators.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Operators acting on EW vertices ("2-fermion" operators).

ttZ/tty vertices tWb vertices $C_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$ $C_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{q} \gamma^{\mu} q)$ $C_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{q} \gamma^{\mu} q)$ $C_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{q} \gamma^{\mu} \tau^I q)$ $C_{\theta Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{q} \gamma^{\mu} \tau^I q)$ $C_{t B} = y_t g_Y (\bar{q} \sigma^{\mu \nu} t) \tilde{\varphi} B_{\mu \nu}$ $C_{t W} = y_t g_w \left(\bar{q} \sigma^{\mu \nu} \tau^I t \right) \tilde{\varphi} W_{\mu \nu}^I$

Form-factors vs. effective operators

Operators acting on ttZ, tt γ vertices ("2-fermion" operators) can be transformed into the form-factors scheme:

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Transformation between effective operators and form-factors:

$$\begin{split} F_{1,V}^{Z} &= \frac{1}{2} \left(C_{\varphi Q}^{(3)} - C_{\varphi Q}^{(1)} - C_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} C_{\varphi q}^{V} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ F_{1,A}^{Z} &= \frac{1}{2} \left(-C_{\varphi Q}^{(3)} + C_{\varphi Q}^{(1)} - C_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} C_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ F_{2,V}^{Z} &= \left(C_{tW} c_{W}^{2} - C_{tB} s_{W}^{2} \right) \frac{2m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = C_{uZ} \frac{4m_{t}^{2}}{\Lambda^{2}} \\ F_{2,V}^{\gamma} &= \left(C_{tW} + C_{tB} \right) \frac{2m_{t}^{2}}{\Lambda^{2}} = C_{uA} \frac{2m_{t}^{2}}{\Lambda^{2}} \\ F_{2,A}^{Z} &= F_{2,A}^{\gamma} = 0 \end{split}$$

$$\begin{aligned} \text{We cannot access to CPV sector through effective operators in our setup by the moment.} \end{aligned}$$

We change to a more appropriate basis (Vector/Axial - Vector)

EFT: 4-fermion operators

Alternative to form-factors: Integrate out explicit mediators and describe BSM effect through effective D6 operators.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Other group of D6 effective operators collect the $e^-e^+ \rightarrow t\bar{t}$ contact interaction ("4-fermion" operators) :

Form-factors vs. effective operators

Other group of D6 effective operators collect the e-e+tt contact interaction ("4-fermion" operators) :

e+	/t	(ĒL)(ĒL)	$egin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{pmatrix} l\gamma_{\mu}l \end{pmatrix} (\bar{q}\gamma^{\mu}q) \\ \left(\bar{l}\gamma_{\mu}\tau^{I}l \right) \left(\bar{q}\gamma^{\mu}\tau^{I}q \right) $
		(R R)(R R)	\mathcal{O}_{eu}	$(\bar{e}\gamma_{\mu}e)(\bar{u}\gamma^{\mu}u)$
	k +	(R R)(LL)	\mathcal{O}_{eq}	$(\bar{e}\gamma_{\mu}e)(\bar{q}\gamma^{\mu}q)$
e -		(ĒL)(ĒR)	\mathcal{O}_{lu}	$\left(\bar{l}\gamma_{\mu}l\right)\left(\bar{u}\gamma^{\mu}u\right)$
	(ĪR)(ĪL) &	(R L)(LR)	$\mathcal{O}_{lequ}^{(1)}$	$\left(\bar{l}e\right)\epsilon\left(\bar{q}u\right)$
			$\mathcal{O}_{lequ}^{(3)}$	$\left(\bar{l}\sigma_{\mu\nu}e\right)\epsilon\left(\bar{q}\sigma^{\mu\nu}u\right)$

Conversion to V/A - V basis:

multi-TeV operation

MC simulation for effective operators parameterisation: MG5_aMC@NLO with an EW Effective Theory model (*courtesy of C. Zhang, G. Durieux, et al.*).

 $\sqrt{s} = \{380, 500, 1000, 1400, 3000\}$ GeV ILC 1.4 TeV 380 GeV 500 GeV 1 TeV 3 TeV (-0.8, +0.3) (-0.8, 0) (-0.8, +0.2) (-0.8, 0) (-0.8, 0)Pol (e-, e+) (+0.8, 0)(+0.8, -0.3)(+0.8, -0.2) (+0.8, 0)(+0.8, 0)0,930 **Cross-section (pb)** 0,025 0,792 0,256 0,113 Lumi (fb-1) 500 500 1000 1500 3000

Parameterisation of different observables through effective operators...

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1 \text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1 \text{TeV})^4} \sigma_{ij}^{(2)}$$

 $e^-e^+ \rightarrow t\bar{t}$ production at...

CLIC

Cross-section sensitivity

(multi-) TeV operation provides better sensitivity to four-fermion operators

Cross-section vs Asymmetry

Objective: find different observables which provide an ideal complementarity between operators.

Axial and vector operators can be disentangled by using the crosssection and the forward-backward asymmetry in the fit.

68%CL χ^2 bands: 1 measurement \longrightarrow 1 band in C1-C2 space.

The power of polarisation

Objective: find different observables which provide an ideal complementarity between operators.

Only with one observable, the initial state polarisation provides complementary constraints.

68%CL χ^2 bands: 1 measurement \longrightarrow 1 band in C1-C2 space.

Global Fit

We find consistency with form-factors results (arXiv:1505.06020)

WbWb study at 300 GeV

WbWb production allows the study of the Wtb vertex. This can be useful for disentangling C_φ_Q(1) and C_φ_Q(3).

We choose a point below threshold for trying to avoid tt production.

Cross-section at 250 GeV is to low, and operator sensitivities are not enough higher. At 300 GeV, sensitivities and cross-section grow.

Difficulty in isolating Wtb contributions.

Different operators contribute due to the tt off-shell production.

Conclusion

- We have two alternatives for the study of top quark couplings: formfactors and effective operators. From the latter we can distinguish between "2-fermion" operators (comparable with form-factors) and "4fermion" operators (contact interactions).
- Observables parameterisation in terms of the effective operators allow us the extraction of the operators coefficients. Complementarity between different observables at different energies allow us to decrease operators correlations providing a better χ^2 fit.
- First results show low uncertainties in the operators coefficients and a consistency between both schemes.

٠

•

Status of form-factors scheme

Assume production is dominated by SM and NP scale is beyond direct reach.

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Conservative scenario for CLIC: NNNL calculations at threshold predict a 3% theory uncertainty

Helicity angle

In the rest system of the t quark, the angle of the lepton from the W boson follows:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}} = \frac{1+\lambda_t\cos\theta_{hel}}{2} = \frac{1}{2} + (2F_R - 1)\frac{\cos\theta_{hel}}{2}$$

We study the possibility of including the slope of the distribution of the helicity angle, λt as a third observable.

Good complementarity with Afb in the <u>4-fermion sector</u>.

Energy complementarity

68%CL χ^2 bands: 1 measurement \longrightarrow 1 band in C1-C2 space.

Contribution of $1/\Lambda^4$ terms

$$\mathcal{O}_i \propto |\mathcal{M}|^2 \propto \left[|\mathcal{M}_{SM}|^2 + \frac{1}{\Lambda^2} \left(\mathcal{M}_{SM} \times \mathcal{M}_O^{dim6} \right) + \frac{1}{\Lambda^4} |\mathcal{M}_O^{dim6}|^2 + \mathcal{O} \left(\Lambda^{-4} \right) + \dots \right]$$

Parameters extraction without Clequs operators using cross-section and forward-backward asymmetry at 5 center-of-mass energy and 2 initial state polarisations.

		Only Λ ²	Λ² + Λ⁴ (diagonal)	Λ ² + Λ ⁴ (diagonal + off- diagonal)
	ChN	0,00068	0,00039	0,00037
P	ClqA	0,00057	0,00046	0,00045
	CeqV	0,00083	0,00051	0,00049
	CeqA	0,00062	0,00044	0,00042
	CphiqV	0,53	0,14	0,13
	CphiqA	0,16	0,15	0,15
	CuA	0,0073	0,0069	0,0068
	CuZ	0,14	0,04	0,03

WbWb study below threshold

From 250 GeV to 300 GeV there is a difference in cross-section of approximately an order of magnitude.

Assuming an ingrate luminosity of 250fb-1 in both points we find 25 events at 250 against 500 events at 300 GeV.

 $(e, e^+) = (-0.8, +0.3)$

 $(e^{-}, e^{+}) = (+0.8, -0.3)$

Cφφ

C_{\$}Q1

CtB

CbW

CtW

C_{\$}Q3

Polarization

10³

10² ·

10

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

 10^{-6}

Sensitivity

4f-Ce

4f-Cl