CAN-049a: Comparison of Energy Reconstruction Schemes and Different Granularities in the CALICE AHCAL

Changes since CALICE Meeting Kyushu

Coralie Neubüser, Katja Krüger

CALICE Day Santander, 01.06.16

Particle Flow Detectors for e⁺e⁻ Colliders

ILD Simulation with 3x3cm² HCAL

ILD Simulation with 1x1cm² HCAL

- Particle flow reconstruction (combination of track + Calorimeter measurements) depends on granularity for pattern recognition
- > Which granularity and energy information is needed?

CALICE AHCAL, DHCAL & SDHCAL

12bit readout1bit readout2bit readout3x3cm21x1cm21x1cm2Readout/Energy reco:
Granularity:can be studied in AHCAL data
can be studied in AHCAL MC

Energy Reconstruction Schemes

> Analogue

- Observable: energy sum E_{sum} [MIP]
- \rightarrow Mean linear response

$$E_{rec,ana\log ue} = c \cdot E_{sum}$$

- > Analogue Software Compensation
 - Resolution is degraded by difference in AHCAL response to em and hadronic parts of shower (e/π=1.19)
 - Observable is individual hit energy e_i

$$E_{rec,SC} = \sum_{j=1}^{N_{hits}} \omega(e_j, E_{sum}) \cdot e_j$$

Digital

- Observable: total number of hits N_{hits}
- → Mean response not linear, correction in reconstruction process $(1 1)^{1/b}$

$$E_{rec,digital} = \left(\frac{N_{hits}}{a}\right)^{1/l}$$

Semi-Digital

 Observables: number of hits above 3 thresholds:

N₁: 0.5 MIP < hits < 10.5 MIP
N₂: 10.5 MIP < hits < 57 MIP
N₃: 57 MIP < hits
$$N_{hits} = N_1 + N_2 + N_2$$

$$E_{rec,SD} = \sum_{i=1}^{3 thresholds} \alpha_i (N_{hits}) \cdot N_i$$

CAN-049a

- Study of energy reconstruction schemes with Fe-AHCAL testbeam data
- Study of impact of granularity on energy reconstruction going from 3x3cm² → 1x1cm² tiles in Fe-AHCAL simulation
- Improvements done since last CALICE Meeting:
 - Optimisation of thresholds set for semi-digital energy reconstruction
- > Approved, published on CALICE website and results shown at CALOR

https://twiki.cern.ch/twiki/pub/CALICE/CaliceAnalysisNotes/CAN-049a.pdf

Shown in Kyushu: Energy Resolution of 3x3 Fe-AHCAL

Digital

Granularity of max. 3x3 cm² not sufficient

Semi-digital

 Better than Analogue for beam energies below 32GeV

Software Compensation

Best results

Shown at CALOR: Energy Resolution of 3x3 AHCAL

Digital

 Resolution degraded by saturation stepping in at low energies

Semi-Digital

- Better than Analogue over whole energy range, although less signal information
- Included weighted scheme, not used in analogue reconstruction yet

Software Compensation

Best results

Semi-Digital Energy Reconstruction

Threshold setting

- Observables number of hits above 3 threshold t₁,t₂ and t₃ : N₁: t₁ < hits < t₂
 - N₂: t_2 < hits < t_3 N₃: t_3 < hits

$$N_{hits} = N_1 + N_2 + N_3$$

 \rightarrow Weights determined for 3 classes of hits

$$E_{rec,SD} = \sum_{j=1}^{3} \alpha_j (N_{hits}) \cdot N_j$$
$$\chi^2 = \sum_{i=1}^{N} \frac{\left(E_{beam}^i - E_{rec,SD}^i\right)^2}{E_{beam}^i}$$

→ Idea for optimisation: χ^2 value gives estimate of reconstruction accuracy

Optimisation of Semi-Digital Thresholds

- For 3x3 AHCAL
 - Optimisation procedure done with data
 - Scan of threshold range: t₂ in 0.5MIP and t₃ in 1MIP steps, lowest threshold fixed to

 $t_1 = 0.5 \text{ MIP}$

Minimum chi2 value (black cross) found at t₁ = 0.5MIP

$$t_2 = 10.5MIP$$

 $t_3 = 57MIP$

Red cross marks the values previously used, following the MICROMEGAS SDHCAL thresholds

Impact of Granularity

1m³ Analogue Scintillator-Steel HCAL physics prototype, simulation (Geant4 9.6 based) fits data

Granularity is altered in simulation to 1x1cm²

Shown at Kyushu: Energy Resolution of 1x1 AHCAL MC

> Major change $3x3 \rightarrow 1x1$:

- Threshold lowered to 0.3MIP
- No noise (realistic nowadays!)

> Analogue

3x3→1x1 no change!

Digital

 Better resolution than Analogue reconstruction for energies below 30 GeV due to Landau fluctuations?

Semi-Digital

No threshold optimisation!

Shown at CALOR: Energy Resolution of 1x1 AHCAL MC

> Major change $3x3 \rightarrow 1x1$:

- Threshold lowered to 0.3MIP
- No noise (realistic nowadays!)

> Analogue

■ 3x3→1x1 no change!

> Digital

 Better resolution than Analogue reconstruction for energies below 30 GeV due to suppression of Landau fluctuations?

Semi-Digital achieves Software Compensation resolution

Optimisation of Semi-Digital Thresholds 1x1cm² AHCAL

> For 1x1cm² AHCAL

- Optimisation procedure done with MC
- Scan of threshold range: t₂ in 0.5MIP and t₃ in 1MIP steps, lowest threshold fixed to

 $t_1 = 0.3 \text{ MIP}$

Minimum chi2 value (black cross) found at

➤ Red cross marks the values previously used, following the MICROMEGAS SDHCAL thresholds → closer to minimum than in 3x3cm²

Comparison of 1x1 & 3x3 AHCAL Simulation

- Same reconstruction method
- Semi-Digital energy reconstruction shows granularity dependence
- Software Compensation doesn't improve with higher granularity
- > 1x1 Semi-Digital equivalent to 3x3 Software Compensation

Comparison of 1x1 AHCAL MC & DHCAL Data

- Same reconstruction method
- FTFP_BERT Simulation for 3x3 and 1x1 AHCAL
- Saturation in DHCAL data reduced by fitting method and included TCMT
- > Hint that higher efficiency of Scintillator tiles improves digital reconstruction for low energies

Comparison of 1x1 AHCAL MC & SDHCAL Data

- Same reconstruction method
- FTFP_BERT Simulation for 3x3 and 1x1 AHCAL
- SDHCAL data taken with 10 more active layers!
 - Nevertheless 1x1 AHCAL MC better
- > Hint that higher efficiency of Scintillator tiles improves semidigital reconstruction for low energies

Conclusions

- For analogue readout 3x3cm² cell size sufficient
- For 1x1cm² AHCAL semi-digital readout sufficient
- → Understood: Readout and Granularity
- → Need to understand: Scintillator versus RPC gas
- Impact on Particle Flow algorithm need to be verified

Thank you!

BACKUP: Energy Reconstruction Schemes

Compare SC and SD weights:

- > ω and α_i depend on E_{sum} and N_{hits}
- ω weights energy of hits, α_i
 weights the number

$$\sum_{i=1}^{3} N_{i} = \sum_{j=1}^{N_{hits}} \frac{e_{j}}{e_{j}}$$

Forced 1/e_j dependence shows nice agreement with SC findings

