New field cage LP2

Ole Bach, Bernd Beyer, Volker Prahl New field cage LP2 Santander, 31.05.2016

- >Improvement of the second field cage
- >Material study of screws and inserts
- >Glue thickness study
- >Bending test
- >Material of the end flange
- >Mandrel

- Very high mechanical precision for field homogeneity
- High stability (self supporting between end caps)
- Very limited material budget
- > (radiation length ~ 1%)
- > HV stability

Improvement of the second field cage

- >Field cage with required accuracy
- >Gain knowledge and experience of building

composite components

>Second field in case of damage the first one

>Material test for TPC

Improvement of the second field cage

(b) cross-section of the field cage wall and the end flanges

- Wall cross section as before
- One field strip foil available
 - > already equipped with resistor chain
- Radiation length of LP1: 1.24%

	Material	Eff. thickness (cm)	X/X ₀ (%)
erts ss	Copper Polyimide Glass fiber Aramid paper Honeycomb Epoxy	0.007 0.017 0.04 0.007 2.35 ≈ 0.06	$egin{array}{c} 0.48 \\ 0.06 \\ 0.38 \\ 0.02 \\ 0.17 \\ pprox 0.17 \end{array}$
		\sum	1.24

- probably too optimistic
- (epoxy thickness)
- New field cage: outer shielding of aluminum instead of copper foil?
- (shielding capabilities to be tested)

Material study of screws and inserts

- Idea: replace metal screw inserts and screws
- Two materials selected, Torlon and PPS Techtron 1000
 - to minimize material budget
- Long term stability > constant force between the
- Field cage and Endplate
- Gluing possible
- Machinable
- . Strength test with both material pieces finished
 - 2 kg force are applied in LP
 - At 25 kg: negligible lengthening
 - Tested up to 50 kg (creep behavior)
 - Conclusion: both materials fulfils requirements

Tensile test setup of screw and insert shown Torlon screws

Glue thickness study

GFK vs Nomex facings and different glue thickness

Vergleichskriterien	Material	durchschnittl. Steigung [mm/N]	max. Kraft [N]	max. Durchbiegung [mm]
Biegeversuch 01	AIMg3 600x50x8	0.0069	1197.96	8.00
Biegeversuch 05	AIMg3 600x50x6	0,0178	538,66	8,00
Biegeversuch_10	GFK 390g/m ² + Honeycomb 22,5mm (C2-4,80x-29) + GFK 390g/m ² + 2x Kleber 10g (L /L)	0,0169	263,72	4,54
Biegeversuch_11	GFK 390g/m ² + Honeycomb 22,5mm (C2-4,80x-29) + GFK 390g/m ² + 2x Kleber 12,5g (L/L)	0,0175	356,30	6,15
Biegeversuch_12	GFK 390g/m ² + Honeycomb 22,5mm (C2-4,80x-29) + GFK 390g/m ² + 2x Kleber 15g (L/L)	0,0277	378,75	8,92
Biegeversuch_13	Nomex 410 / 0,3mm + Honeycomb 22,5mm (C2-4,80x-29) + Nomex 410 / 0,3mm + 2x Kleber 10g (L/L)	0,0901	117,83	6,50
Biegeversuch_14	Nomex 410 / 0,3mm + Honeycomb 22,5mm (C2-4,80x-29) + Nomex 410 / 0,3mm + 2x Kleber 15g (L/L)	0,0607	179,55	8,48
Biegeversuch_15	Nomex 410 / 0,3mm + Honeycomb 22,5mm (C2-4,80x-29) + Nomex 410 / 0,3mm + 2x Kleber 12,5g (L/L)	0,0598	159,91	8,00
Biegeversuch_16	GFK (390g/mm ² / Köper) + Honeycomb 22,5mm (C2-4,80x-29) + GFK (390g/mm ² / Köper) + 2x Kleber 30g (L/L)	0,0185	373,13	6,48
Biegeversuch_17	GFK (390g/mm² / Köper) + Honeycomb 22,5mm (C2-4,80x-29) + GFK (390g/mm² / Köper) + Nomex 410/ 0,3mm + 3x Kleber 7g (L/L)	0,0233	426,44	9,02
Biegeversuch_18	GFK (390g/mm ² / Köper) + Nomex 410/ 0,3mm + Honeycomb 22,5mm (C2-4,80x-29) + GFK (390g/mm ² / Köper) + 3x Kleber 7g (L/L)	0,0225	440,47	8,32
Biegeversuch_19	Nomex 410/ 0,3mm + Honeycomb 22,5mm (C2-4,80x-48) + Nomex 410/ 0,3mm + 2x Kleber 7g (L/L)	0,0374	471,33	15,47
Biegeversuch_20	GFK (390g/mm ² / Köper) + Honeycomb 22,5mm (C2-4,80x-48) + GFK (390g/mm ² / Köper) + 2x Kleber 12,5g (L/L)	0,0133	830,43	10,80
Biegeversuch_21	Probe 2008 elktr. Durchschlag. Köper + Honeycomb + Leinwand + Kapton	0,0125	1178,32	14,70

$$f_x = \frac{F * l^3 * a_x^2}{2 * E * I * l^2} * \left(1 - \frac{4 * a_x}{3 * l}\right)$$

$$f_{max} = \frac{F * l^3 * a_2}{8 * E * I * l} * \left(1 - \frac{4 * a_2^2}{3 * l^2}\right)$$

$$I = \frac{b * h^3}{12}; E = 70 \frac{kN}{mm^2}$$

$$\stackrel{h= 8,000}{a_1 = 80,000}$$

$$\stackrel{h= 8,000}{a_2 = 200,000}$$

$$\stackrel{h= 8,000}{a_3 = 319,100}$$

Krafteinleitung 2,000

E= 70000,000

Four point bending test with constant bending moment

Bending test of AI reference part to check the bending device Later: in ILD TPC use equivalent aluminum thickness for mechanical simulations

Nomex facing probe

Start of the bending test

Delamination on the top surfce

+ 894

- Piece with stronger
- honecomb comparable
- tp LP 1 reference
- (but delamination)
- Pieces with Nomex paper
- on both sides weakest
- Amount of glue:
- Not so large impact on
- strength but on
- delamination

Average Slope: Deflection/Force [mm/N]

Material of the end flange

Surface and HV-Connection at the Anode flange

The flange is glued together made out of several parts of HCP 70 and machined

DIAB Divinycell® HCP 70 Polymer Foam

Categories: Other Engineering Material; Composite Core Material; Polymer

Initial Divinycell HCP grade has been developed to meet the demand for a high-performance, lightweight buoyancy material with excellent characteristics. It is widely used in pipelines, floatation units, diving bells and impact protection structures. As a result of its excellent hydraulic compressive properties and closed cell structure, it has very low buoyancy loss and water absorption under long-term loading conditions. HCP stands for Hydraulic Comparison and closed cell as the point of pressure in Bar, where the material, when subjected to an increasing pressure of 1-2 Bar/sec, has lost 5% of its initial volume. The design of subsea buoyancy applications is complex and consideration has to be given to the required buoyancy loss and updrift over the expected lifetime and service conditions, with respect to long and short term hydraulic compressive creep, water absorption and hydraulic fatigue.

Operating temperature is -200 to 80°C. Lifetime must be taken into consideration for the very low and high temperatures. Maximum processing temperature is dependent on time, pressure and process conditions. Normally Divinycell HCP can be processed up to 90°C without dimensional changes.

Information Provided by DIAB

Vendors: No vendors are listed for this material. Please click here if you are a supplier and would like information on how to add your listing to this material.

Technical data of the endflange material

Physical Properties	Metric	English	Comments
Density	0.300 g/cc	0.0108 lb/in ^s	ISO 845
Mechanical Properties	Metric	English	Comments
Tensile Strength, Ultimate	11.0 MPa	1600 psi	Perpendicular to the plane; ASTM D1623
Elongation at Break	40 %	40 %	In Shear; ASTM C273
Tensile Modulus	0.450 GPa	65.3 ksi	Extensometer; Perpendicular to plane; ASTM D1621
Compressive Strength	7.60 MPa	1100 psi	Perpendicular to the plane; ASTM D1621
Shear Modulus	0.140 GPa	20.3 ksi	ASTM C273
Shear Strength	5.20 MPa	754 psi	ASTM C273
Thermal Properties	Metric	English	Comments
CTE, linear	20.6 µm/m-°C	11.4 µin/in-ºF	
Maximum Service Temperature, Air	0.0 °C	176 °F	Continuous
Minimum Service Temperature, Air	-200 °C	-326 °F	Continuous

Descriptive Properties

Hydraulic Crush Point (Bar)

70-79

Corecell: rho=0.21g/cm3, X0 = 43.66 g/cm2

Old Mandrel

- not reusable
- hard to align due to missing central axis
- machining after a new pre alignment not successful

Adjustment screws on both sides

Mandrel during machining

Mandrel of LP1 Recess for resistor chain

New mandrel

Insert conical pins for fixing the shelf plates
Remove the pins to decrease the

diameter

Part 1: Movable shelf plate Part 2: Connector strut Part 3: Stiff front and back disk Part 4: Fixation ring Part 5: Shelf plate stiffner Part 6: Central main shaft

Production Schedule

A detailed schedule for the new LP2 Field cage is now in preparation raw overview of the schedule

- Tooling plan
 - Mandrel fabrication and machining of the parts
 - Mandrel support tooling
 - Kind of hand tools
 - ▶ ...
- Material plan
 - List of materials and quantity
 - Precutting and machining
 - ≻ ...

Draft version of an feeding system

- Curing plan
 - ➢ Field cage vessel, facings ...
 - End flanges
 - Facings and foils
 - ▶ ...

Some steps are now under discussion

Thanks for your attention!

