Overview of top quark physics at the LHC

TAE-JEONG KIM (HANYANG UNINVERSITY)

FOR WORKSHOP ON TOP QUARK PHYSICS AT THE LC 2016 6 JULY, 2016, AT KEK, TSUKUBA

Introduction

LHC luminosity and status

• ATLAS and CMS results (7,8 and 13 TeV)

- Top quark cross section & mass
- Rare processes
- $\circ t\bar{t}$ +others (Z,W,H)

LHCb top quark observation at 7 and 8 TeV
Conclusion

LHC luminosity in 2015

• All 13 TeV results in this talk are based on these data sets.

LHC status in 2016

- ATLAS and CMS are in good shape!
- New results will be available soon!

Motivation

• Top quark mass is an important parameter of the standard model.

• Precise measurements of top quark mass provide critical inputs to the fits of global electroweak parameters.

o Internal consistency check with the SM.

 Affect the stability of the SM Higgs potential.

• To check the validity of perturbative QCD.

• Main background for new physics (possible deviation due to new physics)

Top quark Pair production cross section

Single top production (s-channel)

Single top production (t-channel)

ATLAS-CONF-2015-079

Mass measurement

Eur. Phys. J. C (2015) 75:330

 m_{top}^{reco} , m_{W}^{reco} , R_{ba}^{reco} (ratio b jet / light jet) for the fitting in lepton+jet while m_{lb}^{reco} in dilepton.

$$m_{top}^{\ell+jets} = 172.33 \pm 0.75 \text{ (stat + JSF + bJSF)} \pm 1.02 \text{ (syst) GeV},$$

 $m_{top}^{dil} = 173.79 \pm 0.54 \text{ (stat)} \pm 1.30 \text{ (syst) GeV}$

main uncertainties : hadronization, JES, bJES (not for lepton+jet due to 3D fit)

 $m_{\rm top}^{\rm comb} = 172.99 \pm 0.48 \text{ (stat)} \pm 0.78 \text{ (syst)} \text{ GeV}$

 $= 172.99 \pm 0.91 \,\text{GeV}.$ total 0.5%

Mass measurement

arXiv:1606.02179

7 and 8 TeV

about the jet energy scale by using a

Gaussian constraint.

Mass measurement

CMS-PAS-TOP-14-022

 $m_{
m t} = 172.44 \pm 0.13 \,({
m stat+JSF}) \pm 0.47 \,({
m syst}) \,{
m GeV}$ total 0.3% main uncertainties : JEC for flavor, b jet modeling

Pole mass measurement

- Pole mass can be extracted from the normalized cross section with $t\bar{t} + 1$ jet at parton level.
- Performed in the semi-leptonic decay mode at ATLAS while in di-leptonic mode at CMS.

ATLAS : arXiv:1406.5375 Pole mass measurement CMS: arXiv:1603.02303

• Pole mass is extracted from the $t\bar{t}$ pair production cross section measurement in the $e\mu$ channel only at 7 and 8 TeV.

σ_{tt} [pb] 280 CMS 260 -_{pred}(m, 0.8 240 19.7 fb⁻¹ (8 TeV) 0.6 220 0.4 200 180 0.2 5.0 fb⁻¹ (7 TeV) 160 172 173 174 76 178 175 m, [GeV]

140	150	160	170	
CMS comb. of	⁷ 7+8 TeV m(t) = 172.44 -	+ 0.49 GeV	
ATLAS comb.	of 7+8 TeV m	f(t) = 172.84	$\pm 0.70 \text{GeV}$	

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary,√s = 7-8 TeV	Sep 2015	
World Comb. Mar 2014, [7] stat total uncertainty m _{top} = 173.34 ± 0.76 (0.36 ± 0.67) GeV	total stat	Ve Bof	
	$172 31 \pm 1.55 (0.75 \pm 1.35)$	7 ToV [1]	
ATLAS, dilenton (*)	$172.01 \pm 1.00 (0.73 \pm 1.00)$ $173.09 \pm 1.63 (0.64 \pm 1.50)$	7 TeV [1]	
	$173.49 \pm 1.06(0.43 \pm 0.97)$	7 TeV [2]	
	$172.50 \pm 1.52 (0.43 \pm 1.46)$	7 TeV [3]	
CMS all jets	$172.30 \pm 1.32 (0.43 \pm 1.40)$ $173.49 \pm 1.41 (0.69 \pm 1.23)$	7 TeV [4]	
LHC comb (Sep 2013)	173 29+ 0 95 (0 35+ 0 88)	7 TeV [5]	
World comb (Mar 2014) \mapsto	$173.34 \pm 0.76 (0.36 \pm 0.67)$	1 96-7 TeV [7]	
ATLAS I+iets	$172.33 \pm 1.27 (0.75 \pm 1.02)$	7 TeV [8]	
ATLAS dilepton	17379 + 141(0.54 + 1.30)	7 TeV [8]	
ATLAS all jets	175 1 + 18 (14 + 12)	7 TeV [9]	
ATLAS, single top	$172.2 \pm 2.1 (0.7 \pm 2.0)$	8 TeV [10]	
ATLAS comb. $(Mar 2015)$	172.99±0.91 (0.48±0.78)	7 TeV [8]	
CMS. I+iets	172.35 ± 0.51 (0.16± 0.48)	8 TeV [11]	
CMS, dilepton	$172.82 \pm 1.23 (0.19 \pm 1.22)$	8 TeV [11]	
CMS, all jets	$172.32 \pm 0.64 (0.25 \pm 0.59)$	8 TeV [11]	
CMS comb. (Sep 2015) ⊢⊣⊣	172.44±0.48 (0.13±0.47)	7+8 TeV [11]	
	[1] ATLAS-CONF-2013-046 [7] arXiv	:1403.4427	
	[2] ATLAS-CONF-2013-077 [8] Eur.F	Phys.J.C (2015) 75:330	
	[3] JHEP 12 (2012) 105 [9] Eur.F	Phys.J.C75 (2015) 158	
(*) Superseded by results shown below the line	[4] Eur.Phys.J.C72 (2012) 2202 [10] ATL	AS-CONF-2014-055	
	[5] Eur.Phys.J.C74 (2014) 2758 [11] CM	5 PAS TOP-14-022	
165 170 17	5 180	185	
105 170 17		105	
m _{top} [GeV]			

14

W boson helicity

- $con\theta^*$ = angle between the direction of down type fermion from W and reversed direction of top quark
- The polarization fraction was extracted by fitting to data $con\theta^*$ distribution.

 $F_0 = 0.681 \pm 0.012 (stat) \pm 0.023 (syst)$ $F_L = 0.323 \pm 0.008 (stat) \pm 0.014 (syst)$ $F_R = -0.004 \pm 0.005 (stat) \pm 0.014 (syst)$

8 TeV

arXiv:1605.09047

FCNC searches

•
$$Br(t \rightarrow cH)$$
 in 2HDM is ~ 10^{-4} .

The study of FCNC is one of the most interesting research topics in top quark physics.

$t \rightarrow qH$ at ATLAS (8 TeV)

8 TeV JHEP 12 (2015) 061

• Combination of $H \to b\overline{b}$ with $H \to \gamma\gamma$ and $H \to WW^*$, $\tau\tau$ improves the sensitivity.

Obs. (Exp.) B(t→cH) < 0.46% (0.25%)

Obs. (Exp.) B(t→uH) < 0.45% (0.29%)

 $t \rightarrow qH$ with $H \rightarrow \gamma \gamma$

Hadronic + Leptonic channel combined. (most of the sensitivity comes from hadronic channel)

Obs. (Exp.) $B(t \rightarrow cH) < 0.47\%$ (0.71%)

Obs. (Exp.) B(t→uH) < 0.42% (0.65%)

Top decay Br (%)

Cross section of $t\overline{t} + Z$

- Z boson decays two leptons.
- Final states can be 3 or 4 lepton final states.

SM
$$\sigma(t\bar{t}Z) = 839.3^{+80}_{-92}$$
(scale) $^{+25}_{-25}$ (pdf) $^{+25}_{-25}(\alpha_s)$

$\sigma(\mathrm{pp} \to \mathrm{t\bar{t}Z}) = 1065$	$^{+352}_{-313}({ m stat.}) {}^{+168}_{-142}({ m sys})$.) fb
---	--	-------

Channel	Expected significance	Observed significance
3ℓ analysis	2.9	3.5
4ℓ analysis	1.2	0.9
3ℓ and 4ℓ combined	3.1	3.6

(In 8 TeV, 6.4 σ sig. was achieved.)

CMS-PAS-TOP-16-009

13 TeV

Cross section of $t\bar{t} + Z(W)$ Atlas-Conf-2016-003

Expected yields after the fit compared to data for the $t\bar{t}Z$ (left) and $t\bar{t}W$ (right).

to $\sigma_{t\bar{t}Z} = 0.92 \pm 0.30 \text{ (stat.)} \pm 0.11 \text{ (syst.) pb}$ $\sigma_{t\bar{t}W} = 1.38 \pm 0.70 \text{ (stat.)} \pm 0.33 \text{ (syst.) pb}$ SM $\sigma_{t\bar{t}Z} = 0.76 \text{ pb}$ $\sigma_{t\bar{t}W} = 0.57 \text{ pb}$

Search for $t\bar{t} + H$

arXiv:1606.02266

- Direct measurement of ^μ_{WH} the coupling between top quark and Higgs boson.
- Cross section is directly sensitive to the top Yukawa coupling.

	$\mu_{t\bar{t}H}$
ATLAS	$1.9^{+0.8}_{-0.7}$
CMS	$2.9^{+1.0}_{-0.9}$
Combined	$2.3^{+0.7}_{-0.6}$

The sensitivity comes from $t\bar{t}H(\gamma\gamma), t\bar{t}H(multi$ leptons), $t\bar{t}H(b\bar{b})$ Search for $t\bar{t} + H$ update HIG-15-005 H $\rightarrow \gamma\gamma$ HIG-15-008 H \rightarrow leptons HIG-16-004 H \rightarrow bb

Combination of three statistically independent channels :

 $t\bar{t}H(\gamma\gamma), t\bar{t}H($ multi-leptons), $t\bar{t}H(b\bar{b})$ E

SM : $\mu = 1.00^{+0.96}_{-0.85}$ Combined best fit : $\mu = 0.15^{+0.95}_{-0.81}$

- Compatible with the SM prediction
- Sensitivity is similar to 8 TeV and will be updated with full 2016 data.

Top quarks at the LHCb PRL 115 (2015) 112001

N(W+b)

- LHCb detector is a single-arm forward spectrometer covering $2 < \eta < 5$ for the study of particles containing b or c.
- Data excess over Wb background is 5.4 σ .
- Top quark observation in forward fiducial region for the cross section:

 $p_T(\mu) > 25 \ GeV, 2 < \eta(\mu) < 4.5$ $50 < p_T(b) < 100 \ GeV, 2.2 < \eta(b) < 4.2$ $\Delta R(\mu, b) > 0.5, p_T(\mu + b) > 20 \ GeV$

 $\sigma(top)[7 \text{ TeV}] = 239 \pm 53 (stat) \pm 33 (syst) \pm 24 (theory) \text{ fb}$ $\sigma(\text{top})[8 \text{ TeV}] = 289 \pm 43 (\text{stat}) \pm 40 (\text{syst}) \pm 29 (\text{theory}) \text{ fb}$

20 45 70 95 ∞ $[\vec{p}(\mu) + \vec{p}(j)]_T \equiv p_{T}(\mu+b) [\text{GeV}]$

7 and 8 TeV

Conclusion

 LHC was indeed top quark factory. Millions top quark candidates were produced and analyzed to reach the best precision and search for new physics.

• Rare processes in top quark sector are now reachable.

• Run 2 top quark results with 2015 data proved that our ATLAS and CMS detectors are in a good shape at 13 TeV.

• We have many top quark physics programs not covered here or awaiting for coming more data.

• The results at 13 TeV with more data in 2016 will be coming soon!

Differential cross section CMS: arXiv:1505.04480

Unfolded distributions are compared with NNLO prediction.

- Main background is $t\bar{t} + jets$ (Heavy flavor)
- Modeled by POWHEG-BOX+PYTHIA

 $t \rightarrow qH$ with $H \rightarrow \gamma\gamma$

CMS-PAS-TOP-14-019

No significant excess is observed.

Charge Asymmetry

• The charge asymmetry result is consistent with the theory (NLO+EW).

		e 1) j	ເເນນະ ເຫຼ
Visible PS (particle) Jet $p_{\rm T} > 20 \text{ GeV}/c$	$0.029 \pm 0.003 \pm 0.008$	$1.28 \pm 0.03 \pm 0.15$	$0.022 \pm 0.003 \pm 0.005$
Full PS (parton) Jet $p_{\rm T} > 20 \ {\rm GeV}/c$ Jet $p_{\rm T} > 40 \ {\rm GeV}/c$ NLO calculation	$\begin{array}{c} 1.11 \pm 0.11 \pm 0.31 \\ 0.36 \pm 0.08 \pm 0.10 \end{array}$	$52.1 \pm 1.0 \pm 6.8 \\ 16.1 \pm 0.7 \pm 2.1$	$\begin{array}{c} 0.021 \pm 0.003 \pm 0.005 \\ 0.022 \pm 0.004 \pm 0.005 \end{array}$
Jet $p_{\rm T} > 40~{\rm GeV}/c$	0.23 ± 0.05	21.0 ± 2.9	0.011 ± 0.003

Cross section of $t\overline{t} + b\overline{b}$

- In lepton+jets at 8 TeV, the result shows more direct comparison with NLO calculation → measured the cross section in ME.
- Differential measurements of the additional two b jets was performed.

Cross section of $t\overline{t} + bb$ Eur. Phys. J. C (2016) 76:11

• The ratio of $t\bar{t}b\bar{b}/t\bar{t}jj$ is 1.4% which is consistent with MC within the uncertainty.

