# Precision QCD calculation for toppair production at lepton collider in the continuum

### Hua Xing Zhu Massachusetts Institute of Technology

Workshop on Top physics at the LC 2016 July 7th, KEK



### Perspective precision on top EW coupling from ILC

Amjad et al., EPCJ75(2015),10, 512

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$



### Theoretical effort on precision

- QCD N3LO tT production at threshold [Beneke, et al., PRL115, 192001 (2015)]
- QCD N3LO inclusive cross section in high energy expansion up to (m<sup>2</sup>/s)<sup>6</sup> [Chetyrkin et al., NPB503, 339 (1997)]
- Boosted top jet production at NLL [Fleming et al., PRD77(2008) 114003]
- \* One-loop EW corrections [Fleischer et al., EPJC31 (2003) 37]
- QCD NLO event generator including parton shower in WHIZARD
- One-loop EW corrections in GRACE

\*

#### This talk: tT production in the continuum at QCD NNLO



$$\sqrt{S} = 380, 500, 750, 1000?$$
 GeV

Fully differential in top quark kinematics

### tT production in the continuum at QCD NNLO



### Two-loop heavy quark form factor

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

- \* The calculation of heavy quark form factor has been a subject of strong theoretical interest for a long time
- Two-loop contribution with closed fermion loops [Hoang et al., PLB338 (1994) 330]
- Full two-loop results available 10 years later [Bernreuther et al., NPB706, 245(2005); NPB712, 229(2005)]
- Application of many cutting-edge techniques at the time: integration-by-parts identities, Lorentz invariance, Laporta algorithm, method of differential equation
- Results written with 50 pages of harmonic polylogarithms.



### heavy quark pair + jet at NLO



- NLO calculation available for about twenty years [Brandenburg, Uwer, NPB515(1998)279; Nason, Oleari, NPB521(1998)237; Rodrigo, Bilenky, Santamaria, NPB554(1999)257]
- These used to be difficult calculation. The remarkable progress in calculation technique for one-loop amplitude, and NLO subtraction of infrared/collinear singularity make such calculation "almost" trivial nowadays. For example can be automated using tools like Gosam.

### tT+X at QCD NNLO



 $\begin{array}{lll} \mbox{double virtual} & \mbox{real-virtual} & \mbox{double real} \\ \hline \frac{A_1}{\epsilon_{\rm IR}^2} + \frac{B_1}{\epsilon_{\rm IR}} & & \frac{A_2}{\epsilon_{\rm IR}^2} + \frac{B_2}{\epsilon_{\rm IR}} & & \frac{A_3}{\epsilon_{\rm IR}^2} + \frac{B_3}{\epsilon_{\rm IR}} \\ \hline \mbox{For IR-safe cross section} & & \sum_i A_i = 0 & & \sum_i B_i = 0 \end{array}$ 

8

# tT+X at QCD NNLO



- The infrared divergences origin from the real or virtual gluons become soft
- In the double virtual corrections, the IR poles are manifest, while in the realvirtual and double real they come from phase space integration
- The most successful method to deal with these poles at NLO is the subtraction, but at NNLO becomes too tedious
- Instead we generalize the more phase space slicing method to NNLO to overcome this problem

# Phase space slicing using radiation energy

von Manteuffel, Schabinger, H.X.Z, PRD92(2015)no.4,045034; J. Gao, H.X.Z, PRD90.114022; J. Gao, H.X.Z, PRI 113(2014)262001



### Analytic calculation of the unresolved part

- The difficult phase space integral reduces to calculation of matrix element of time-like Wilson loop
- Can be treated analytically
- Results written in about two pages of harmonic polylogarithms

```
c_2(x) = C_F^2 \left[ 2 \frac{(1+x^2)^2}{(1-x^2)^2} \left( G^4(0,x) - 8G(1;x)G^5(0;x) + 8 \left( 2G^2(1;x) + G(0,1;x) + \frac{x^2}{\kappa} \right) G^2(0;x) \right] \right]
           -32\left(G(0, 1; x) + \frac{\pi^2}{6}\right)G(1; x)G(0; x) + 16G^2(0, 1; x) + \frac{16\pi^2}{3}G(0, 1; x) + \frac{4\pi^4}{9}
           +8\frac{(1+x^2)}{(1-x)^2}\left(G^2(0;x)-4G(1;x)G(0;x)+4G(0,1;x)+\frac{2x^2}{3}\right)G(0;x)+8\frac{(1+x)^2}{(1-x)^2}G^2(0;x)
            +C_{F}s_{f}T_{F}\left[-\frac{224}{27}+\frac{16(1-3x+x^{2})}{9(1-x^{2})}\left((G(0;x)-4G(1;x))G(0;x)+4G(0,1;x)+\frac{2x^{2}}{3}\right)\right]
            +\frac{8(1+x^{2})}{3^{1}(1-x^{2})}\left(-\frac{1}{3}G^{2}(0,x)+2G(1;x)G^{2}(0,x)-4\left(G^{2}(1;x)+\frac{\pi^{2}}{6}\right)G(0;x)+\frac{4\pi^{2}}{3}G(1;x)
            +8G(1;x)G(0,1;x)-4G(0,0,1;x)-8G(0,1,1;x)+4\zeta(3)\bigg)+\frac{16(1+30x+x^2)}{2711-x^{2/3}}G(0;x)\bigg]
                                           -\frac{2(11x^4 - 84x^3 + 24x^2 + 12x - 11)}{9(1 - x^2)^2}G^5(0; x) + \frac{4(55x^2 - 294x + 55)}{27(1 - x^2)}G(0; x)
                \frac{4(17x^3 - 32x^2 + 68x - 17)}{8(1 - x^2)(1 - x^2)}G^2(0; x) + \frac{8x^2(5x^4 + 27x^3 + 6x^2 + 3x + 7)}{6(1 - x^2)}G(0; x)
                                    9(1-x^2)(1-x)
               -4\zeta(3)\frac{(1+x^2)(9+x^2)}{(1-x^2)^2}G(0;x) + \frac{4\pi^2(11x^2+66\pi-25)}{27(1-x^2)} + \frac{\pi^4(1+x^2)(77+221x^2)}{90(1-x^2)^2}
                  \frac{16(26x^2 - 33x + 26)}{x^{24}} (G(0; x)G(1; x) - G(0, 1; x)) + \frac{8x^2(1 + x^2)(3 + 7x^2)}{x^{24}} (G(0, 1; x))
                G(0; x)G(1; x)) + 8 \frac{3x^3 - 7x^2 - 5x + 1}{(1 - x^2)(1 - x)} (G(-1; x)G^2(0; x) - 2G(0, -1; x)G(0; x))
              +2G[0, 0, -1; x]) + 16 \frac{x^3 - x^2 + 3x + 1}{(1 - x^2)(1 + x)} (2G(0, 0, -1; x) - G(0; x)G[0, -1; x])
                +\frac{8(13x^4 - 72x^2 + 11)}{3^{11} - x^{2}1^2}(2G(0, 0, 1; x) - G(0; x)G(0, 1; x)) - 8\frac{(1 + x^2)(3x^2 - 1)}{(1 - x^{2})^2}
              \times (6G(0, 0, 0, -1; x) + G(0, -1; x)G<sup>2</sup>(0; x) - 4G(0, 0, -1; x)G(0; x))
              +\frac{1+x^{2}}{1-x^{2}}\left(\frac{8}{3}G(-1;x)G^{3}(0;x)+\left(\frac{4}{3}G(1;x)-8G(0,-1;x)\right)G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}(-1;x))G^{3}(0;x)+(24G^{2}
              -16G(1;x)G(-1;x) - \frac{16\pi^2}{3}G(-1;x) - 16G(-1;x) + \frac{16}{3}G^2(1;x) - \frac{8}{3}G(0,1;x) G(0;x)
              -\frac{4\pi^2}{3}G(-1;x) - \frac{100\pi^2}{9}G(1;x) - 48G(-1;x)G(0,-1;x) + 16G(1;x)G(0,-1;x)
```

von Manteuffel, Schabinger, H.X.Z, PRD92(2015)no.4,045034



$$\begin{split} &+ \frac{16\pi^2}{3}G(0,-1;x) + 16G(0,-1;x) + 16G(-1;x)G(0,1;x) - \frac{32}{3}G(1;x)G(0,1;x) \\ &+ 48G(0,-1,-1;x) - 16G(0,-1,1;x) + \frac{8}{3}G(0,0,1;x) - 16G(0,1,-1;x) + \frac{32}{3}G(0,1,1;x) \\ &+ 32G(0,0,0,-1;x)) + \frac{(1+x^2)(1+3x^2)}{(1-x^2)^2} \binom{8}{3}G(1;x)G^3(0;x) + 16G(0,0,1;x)G(0;x) \\ &+ \left(\frac{2x^2}{3} - 8G(0,1;x)\right)G^2(0;x) - 16G(0,0,0,1;x)\right) + \frac{x^2(1+x^2)}{(1-x^2)^2} \left(-\frac{4}{3}G^4(0;x) \right. \\ &+ 96G(0,0,1;x)G(0;x) - 288G(0,0,0,1;x)\right) + \frac{(1+x^2)^2}{(1-x^2)^2} (16G(0,1;x)G^2(0;x) \\ &+ (16G(0,1,-1;x) - 64G(0,0,1;x) - 32G(1;x)G(0,1;x) + 48G(0,-1,-1;x) \\ &- 32G(1;x)G(0,-1;x) + 16G(0,-1,1;x) + 16G(0,1,1;x))G(0;x) - 24G^2(0,-1;x) \\ &+ 8G^2(0,1;x) - \frac{4\pi^2}{3}G(0,-1;x) - \frac{4\pi^2}{3}G(0,1;x) + 16G(0,0,-1,1;x) + 96G(0,0,0,1;x) \\ &+ 64G(1;x)G(0,0,-1;x) + 16G(1;x)G(0,0,1;x) - 64G(0,0,0,-1,1;x) + 96G(0,0,0,1;x) \\ &+ \frac{4\zeta(3)(13x^4 - 12x^2 - 49)}{3(1-x^2)^2} + \frac{592}{27} \right]. \end{split}$$

# Validating the calculation: cancellation of slicing parameter $\delta_E$

J. Gao, H.X.Z, PRD90.114022





# Validating the calculation: cancellation of slicing parameter $\delta_E$

J. Gao, H.X.Z, PRD90.114022

 $\Delta^{(2),\gamma}$  vs.  $\delta_E$ ,  $s^{1/2}$ =1000 GeV, color: sum



#### Inclusive Xsec: compare with threshold and high energy expansion $\sigma_{\text{NNLO},\gamma} = \sigma_{\text{LO},\gamma} (1 + \Delta^{(1),\gamma} + \Delta^{(2),\gamma})$ J. Gao, H.X.Z, PRD90.114022; see also Dekkers, Bernreuther, PLB738(2014)325 ratio( $\Delta$ ) vs. $s^{1/2}$ [GeV], $\delta_E$ =0.0002, color: sum $\Delta^{(2),\gamma}$ vs. s<sup>1/2</sup>[GeV], $\delta_E$ =0.0002, color: sum 1.3 $\Delta^{(2),\gamma}$ $\Delta^{(2),\gamma}/\Delta^{(2),\gamma}$ $\Delta_{\text{th}}^{(2),\gamma}$ $\Delta_{\text{th}}^{(2),\gamma}/\Delta^{(2),\gamma}$ 1.2 $\Delta_{he}^{(2),\gamma}$ $\Delta_{he}^{(2),\gamma}/\Delta^{(2),\gamma}$ 10<sup>-1</sup> 1.1 threshold exp. 1.0 10<sup>-2</sup> high energy exp. 10<sup>-3</sup> 0.8 1000 1200 400 600 800 400 600 800 1000 1200

 Two-loop threshold expansion: [Czarnecki, Melnikov, 1998; Beneke, Signer, Smirnov, 1998; Hoang, Teubner, 1998...]

- Two-loop high energy expansion: [Chetyrkin, Harlander, Kuhn, Steinhauser, 1997]
- Small corrections, every contribution matter!
- Fully closed fermion loop contribution very helpful in checking our calculation [Hoang, Teubner, NPB519 (1998) 285]

### Comparison with Pade approximation

J. Gao, H.X.Z, PRD90.114022

$$\sigma_{\text{NNLO},\gamma} = \sigma_{\mu^+\mu^-,\gamma} \left( R^{(0)} + \frac{\alpha_s(\mu^2)}{\pi} C_F R^{(1)} + \left( \frac{\alpha_s(\mu^2)}{\pi} \right)^2 R^{(2)} \right) \qquad r = 2m_t / \sqrt{S}$$



 Two-loop Pade approximation: [Chetyrkin, J. H. Kuhn, and M. Steinhauser, NPB482, 213(1996)]. Threeloop also available [Kiyo et al., NPB823(2009)269]

 In general good agreement exact at very high energy S>(1000GeV)^2. Large power corrections proportional to δ<sub>E</sub>\*logδ<sub>E</sub>\*log<sup>2</sup>(S/m<sup>2</sup>t) in the numerical calculation

### NNLO reduces scale uncertainties

 $\sigma_{\mathrm{NNLO},\gamma} = \sigma_{\mathrm{LO},\gamma} (1 + \Delta^{(1),\gamma} + \Delta^{(2),\gamma})$ 

 $\Delta^{(i),\gamma}$  vs.  $\mu_r/s^{1/2}$ ,  $s^{1/2}$ =500 GeV,  $\delta_E$ = 0.001

J. Gao, H.X.Z, PRD90.114022





### NNLO corrections to forward-backward asymmetry



$$A_{FB} = \frac{\sigma_A}{\sigma_S} \equiv \frac{\sigma(\cos\theta_t > 0) - \sigma(\cos\theta_t < 0)}{\sigma(\cos\theta_t > 0) + \sigma(\cos\theta_t < 0)}$$



- Estimation of the theoretical uncertainties from scale variations requires assumption on correlations of the Forward and Backward bins
- Fully correlated scale setting leads to too small uncertainties

### NNLO corrections to forward-backward asymmetry

J. Gao, H.X.Z, PRL113(2014)262001



- Uncorrelated scale setting leads to more realistic uncertainties estimate
- Large NNLO QCD corrections even at √S=500GeV (about half the size of NLO corrections)
- NLO EW corrections about 10% [Fleischer et al., EPJC31 (2003) 37]
- \* NNLO EW corrections highly desirable

### Forward-Backward asymmetry bin-by-bin



 Our results provide full kinematic dependence allowing for corrections of experimental acceptance

# Going beyond stable top production

- Now NNLO QCD corrections to tT production at LC, and NNLO QCD corrections to top decay are available
- It would be interesting to combine production and decay at NNLO to allow full spin correlation and parton level fiducial cross section
- \* Example: first t-channel single top production and decay at NNLO



## Summary

- Precision calculation for top pair production at LC has long been a theoretical arena.
- Full NNLO QCD corrections for tT production in the continuum now available after many years of effort of different groups
- \* Large NNLO corrections to FB asymmetry (half the size of NLO corrections). Uncertainties reduce to 2% at  $\sqrt{S}=500$ GeV with conservative estimate
- With the current accuracy of QCD prediction, two-loop EW corrections become highly important and might become the driving force of further theoretical progress in the years to come

Thanks a lot for listening!

