Computation of Top Quark Threshold Production

QQbar_threshold (C++ code for heavy quark threshold)

M.Beneke, Y.Kiyo, A.Maier, J.Piclum arXiv:1605.03010v2[hep-ph]

Workshop on Top Physics at LC 2016, KEK, July 6-8 2016

Top mass

Precision measurement

Threshold scan for top mass at ILC in ee→tt

Looking at color singlet boundstate pole

Top mass at LHC in $gg \rightarrow \gamma \gamma$ Kawabata-Yokoya, arXiv:1607.00990

Slide@Top WS 2015 top threshold

cross section near top threshold normalized to point particle one

Beneke-YK-Marquard-Penin-Piclum -Steinhauser:1506.06864[hep-ph]

- N³LO threshold cross section computed
- three-loop matching coeff. Cv Marquard-Piclum-Seidel-Steinhauser(14)
- three-loop QCD pot. VQCD Smirnov-Smirnov-Steinhauser(10); Anzai-YK-Sumino(10)
- two-loop 1/m pot. V1/m
 Kniehl-Penin-Smirnov-Steinhauser(02, 14);
- ✓ N³LO non-rela potential ins. Beneke-YK-Schuller(05,14), Beneke-YK-Penin(07)
- Non-resonant, EW, Higgs.....
 Talk by Beneke (previous speaker)

Slide@Top WS 2015 NNNLO result

Beneke-YK-Marquard-Penin-Piclum-Steinhauser(15)

R(μ) normalized by R(80GeV) $\cdot 3 \sim 7 \% \mu$ -variation

- $\delta \Gamma = \pm 100 \text{MeV}$ at $\mu = 80 \text{GeV}$
- √speak and Rpeak uncertainty
- •N¹LO: $\delta E \sim 300 \text{MeV}, \delta R \sim 0.1$
- N²LO: $\delta E \sim 200 \text{MeV}, \delta R \sim 0.2$
- N³LO: $\delta E \sim 100 \text{MeV}, \delta R \sim 0.05$

- Our (private) NNNLO cross section code took few days to make a plots for threshold scan
- Mathematica package

- Fast C/C++ code
- Compatibility with Mathematica
- Public

QQbar_threshold Beneke-Kiyo-Maier-Piclum(2016)

- C++ program
- Mathematica via MathLink
- top/bottom threshold cross section (5ms per parameter point)
- related quantities(energy, wavefunc. moments, top width) implemented

An example

examples/C++/xsection_1.cpp

```
#include "QQbar threshold/load grid.hpp"
#include "QQbar threshold/xsection.hpp"
#include <iostream>
int main(){
  namespace QQt = QQbar threshold;
 QQt::load grid(QQt::grid directory() + "ttbar grid.tsv");
  const double mu = 50.;
  const double mu width = 350.;
  const double mt PS = 168.;
  const double width = 1.4;
  for (double sqrt s = 330.; sqrt s < 345.; sqrt s += 1.0) {</pre>
    std::cout << sqrt s << '\t'</pre>
       << QQt::ttbar xsection(
           sqrt s ,{mu, mu width} ,{mt PS , width}, QQt::N3L0
       << '\n';
  }
```

An example

examples/Mathematica/xsection_1.m

```
Needs["QQbarThreshold'"];
LoadGrid[GridDirectory <> "ttbar grid.tsv"];
With[
   Ł
     mu = 50.,
     mtPS = 168.,
     width = 1.4,
     muWidth = 350.,
     order = "N3L0"
   },
   Do [
      Print[
         sqrts, "\t",
         TTbarXSection[sqrts, {mu, muWidth}, {mtPS, width}, order]
      {sqrts, 330., 345., 1.}
1;
```

An example

X section formula

Because top quark is unstable, top and (bW) can not be distinguished. Therefore non-resonant (bW) production need to be taken into account in the definition of top quark production. Hoang-Reisser(04)

non-resonant diagrams(example) Beneke-Jantzen-Femenia(2010)

Scale dependence

Options

C++ name	Mathematica name	Description	
contributions	Contributions	Fine-grained control over	
		higher-order corrections.	
alpha_s_mZ	alphaSmZ	Value of $\alpha_s(m_Z)$.	
alpha_s_mu0	alphaSmu0	Values of μ_0 and $\alpha_s(\mu_0)$.	
m Higgs	mHiggs	Value of m_H .	
Yukawa_factor	YukawaFactor	Multiplier for heavy-quark	
		Yukawa coupling.	
resonant_only	ResonantOnly	Toggle for non-resonant contri-	
		bution.	
invariant_mass_cut	InvariantMassCut	Cut on $W b$ invariant mass.	
ml	ml	Value of light-quark mass.	
r4	r4	Value of parameter in N ³ LO	
		MS to pole scheme conversion.	
alpha	alpha	Value of $\alpha(\mu_{\alpha})$.	
mu_alpha	muAlpha	Value of scale μ_{α} for QED cou-	
		pling.	
resum_poles	ResumPoles	Number of resummed poles.	
beyond_QCD	BeyondQCD	Toggle for higher-order correc-	
		tions beyond QCD.	
mass_scheme	MassScheme	Mass renormalisation scheme.	
production	Production	Toggle for production chan-	
		nels.	
expand_s	ExpandEnergyFactor	Toggle for expansion of $1/s$	
		prefactors.	
double_light_insertion	DoubleLightInsertion	Toggle for double insertions of	
		light-quark potential.	

Contributions

C++ name	Mathematica name	Corrections	Defined eq.
v_Coulomb	vCoulomb	$\{\delta_C V^{(1)\dagger}, \delta_C V^{(2)}, \delta_C V^{(3)}\}$	(24)
v_delta	vdelta	$\{\delta_{\delta}V^{(0)}, \delta_{\delta}V^{(1)}\}$	(24)
v_r2inv	vr2inv	$\{\delta_{1/r^2}V^{(1)}, \delta_{1/r^2}V^{(2)}\}$	(24)
v_p2	vp2	$\{\delta_p V^{(0)}, \delta_p V^{(1)}\}$	(24)
<pre>v_kinetic</pre>	vkinetic	$\{\delta kin\}$	(24)
ultrasoft	ultrasoft	$\{\delta^{us}G(E)\}$	(23)
v_Higgs	vHiggs	$\{\delta_H V^{(0)}\}$	(24)
<pre>v_QED_Coulomb</pre>	vQEDCoulomb	$\{\delta_{ m QED}V^{(0)}\}$	(24)
cv	cv	$\{c_v^{(1)}, c_v^{(2)}, c_v^{(3)}\}$	(17)
cv_Higgs	cvHiggs	$\{c_{vH}^{(2)}, c_{vH}^{(3)}\}$	(17)
Cv_QED	CvQED	$\{C_{ ext{QED}}^{(v)}\}$	(21)
Ca_QED	CaQED	$\{C_{ ext{QED}}^{(a)}\}$	(21)
Cv_WZ	C∨WZ	$\{C_{WZ}^{(v)}\}$	(21)
Ca_WZ	CaWZ	$\{C_{WZ}^{(a)}\}$	(21)
dv	dv	$\{d_v^{(0)}, d_v^{(1)}\}$	(18)
са	са	$\{c_a^{(1)}\}$	(19)

Table 2: List of potential and matching coefficient corrections that can be modified with the contributions option. In general superscripts refer to the number of loops associated with a correction. For c_{vH} we instead follow the notation of [19], where the superscript indicates the PNRQCD order. [†] $\delta_C V^{(1)}$ multiplies both the contributions from the NLO colour Coulomb potential and the QED Coulomb potential.

Beyond QCD: Models

Higgs effect: YukawaFactor

Higgs effect in SM

Models

Model

Summary

- Public C++ code: QQbar_threshold Published
- MathLink allows mathematica usage
- Assemble many (Nealy complete) Loop corrections
- Many options for model studies

Future development

- Complete NNNLO corrections
- •NNLO and higher Non-resonant contributions
- e+e- ISR for simulation study
- Anything more?

Top WS@Valencia 2015

top threshold

cross section near top threshold normalized to point particle one

Beneke-YK-Marquard-Penin-Piclum -Steinhauser:1506.06864[hep-ph]

- N³LO threshold cross section computed
- three-loop matching coeff. Cv Marquard-Piclum-Seidel-Steinhauser(14)
- three-loop QCD pot. VQCD Smirnov-Smirnov-Steinhauser(10); Anzai-YK-Sumino(10)
- two-loop 1/m pot. V1/m
 Kniehl-Penin-Smirnov-Steinhauser(02, 14);
- ✓ N³LO non-rela potential ins. Beneke-YK-Schuller(05,14), Beneke-YK-Penin(07)
- Non-resonant, EW, Higgs.....
 Talk by Beneke (previous speaker)

NNNLO result

Beneke-YK-Marquard-Penin-Piclum-Steinhauser(15)

R(μ) normalized by R(80GeV) $\cdot 3 \sim 7 \% \mu$ -variation

- $\delta \Gamma = \pm 100 \text{MeV}$ at $\mu = 80 \text{GeV}$
- √speak and Rpeak uncertainty
- •N¹LO: $\delta E \sim 300 \text{MeV}, \delta R \sim 0.1$
- N²LO: $\delta E \sim 200 \text{MeV}, \delta R \sim 0.2$
- N³LO: $\delta E \sim 100 \text{MeV}, \delta R \sim 0.05$

Part I

Recently the full $\mathcal{O}(\alpha_S^5 m, \alpha_S^5 m \log \alpha_S)$ correction to the heavy quarkonium 1S energy level has been computed (except the a_3 -term in the QCD potential). We point out that the full correction (including the $\log \alpha_S$ -term) is approximated well by the large- β_0 approximation. Based on the assumption that this feature holds up to higher orders, we discuss why the top quark pole mass cannot be determined to better than $\mathcal{O}(\Lambda_{\rm QCD})$ accuracy at a future e^+e^- collider, while the $\overline{\rm MS}$ mass can be determined to about 40 MeV accuracy (provided the 4-loop $\overline{\rm MS}$ -pole mass relation will be computed in due time).

YK-Sumino(2002)

Combining recent perturbative analyses on the static QCD potential and the quark pole mass, we find that, for the heavy quarkonium states $c\bar{c}$, $b\bar{b}$ and $t\bar{t}$, (1) ultrasoft (US) corrections in the binding energies are small, and (2) there is a stronger cancellation of IR contributions than what has been predicted by renormalon dominance hypothesis. By contrast, for a hypothetical heavy quarkonium system with a small number of active quark flavors ($n_l \approx 0$), we observe evidence that renormalon dominance holds accurately and that non-negligible contributions from US corrections exist. As an important consequence, we improve on a previous prediction for possible achievable accuracy of top quark $\overline{\text{MS}}$ -mass measurement at a future linear collider and estimate that in principle about 20 MeV accuracy is reachable.

YK-Mishima-Sumino: 1506.06542[hep-ph]

Mass extraction@LC (Simplified Strategy diagram)

We(YK-Mishima-Sumino) suggest to work in MS from begining to get better precision

Pole-MS mass relation

$$\begin{split} m_{\text{pole}} &= \overline{m} \left[1 + d_0 \frac{\alpha_s(\overline{m})}{\pi} + d_1 \left(\frac{\alpha_s(\overline{m})}{\pi} \right)^2 + d_2 \left(\frac{\alpha_s(\overline{m})}{\pi} \right)^3 + d_3 \left(\frac{\alpha_s(\overline{m})}{\pi} \right)^4 \right] \\ &= \overline{m} \left[1 + 0.4244\alpha_s + 0.8345\alpha_s^2 + 2.368\alpha_s^3 + 8.461\alpha_s^4 \right] \quad \rightarrow \text{Talk by Marquard} \end{split}$$

d₃ in full QCD: Marquard-Smirnov-Smirnov-Steinhauser arXiv:1502.01030[hep-ph] *numbers are slightly differernt form the one of QCD, because of decoupling

- In this talk, I use $\overline{m} = m_{\overline{\mathrm{MS}}}(\overline{m})$

• We use effective field theory, in which the heavy quark decoupled, i.e. n=5 for "topoinum" \rightarrow renormalon cancellation

$$\begin{split} d_3 &\equiv d_3^{(n_l=5)} = -0.67814 n_l^3 + 43.396 n_l^2 - 745.42 n_l + 3551.1 \\ &\pm 21.5 \text{ (Marquard, et al.)} \end{split}$$

d3 comparison

QCD Static Energy

Stability of the static energy can be seen/investigated for arbitrary n_f and m_q if a_i , d_i are known to required order.

Stability of *E*_{QCD} \rightarrow est. for d_3 Sumino(14)

a3: Smirnov-Smirnov-Steinhauser. d3: Marquard-Smirnov-Smirnov-Steinhauser

QCD Static Energy

(ultrasoft correction excluded)

Stability of E_{QCD} holds without ultrasoft effect, but visible constant shift

Toponium energy

Existence of a minimum sensitivity point against scale variation with exact d3, which was not the case in largebeta0 approximation in 2002

2016年7月7日木曜日

Toponium energy

balck bands due to numerical error of d3(exact)

• three lines for NNNLO for $\alpha_s(M_z) = 0.1185 \pm 0.0006$

$$\bullet \quad \delta M_{1S} = 2\delta m_{\overline{\mathrm{MS}}} = (40_{\mu} + 10_{d_3} + 90_{\alpha_s}) \text{ MeV}$$

E1S in PS scheme

 $\delta M_{1S} = 2\delta m_{\rm PS} = (75_{\mu} + 16_{\alpha_s}) \,\,{\rm MeV} \,\,(80 < \mu < 320 \,\,{\rm GeV})$

E1S in PS' scheme

PS > MS

provided that mps, α_s has no significant error

Part II

Threshold cross section in MS scheme using our code: TTbarXSection

Beneke-YK-Schuller (2008~)

inputs:
$$m_{\rm PS} = 173 {
m GeV}$$

 $m_{\overline{\rm MS}} = 163.3 {
m GeV}$
 $\Gamma_t = 1.33 {
m GeV}$
 $\alpha_s(M_z) = 0.1185$

2016年7月7日木曜日

MSbar scheme

- large corrections at lower order
- but converge quickly
- scale dependence improved at NNNLO

MSbar scheme NNNLO

•uncertainty band due to μ variation is about half or smaller at the peak and below peak position.

no improvement above peak

Peak (MSbar scheme) at NNNLO

•uncertainty due to μ for height of R is same with PS, but peak position is stable and uncertainty band get reduced by about a factor 2.

2016年7月7日木曜日

XS near peak

 $m_{\rm PS} = 173 {\rm GeV}$

 $m_{\overline{\mathrm{MS}}} = 163.3 \mathrm{GeV}$

Conclusion

 precision top mass measurement investigated based on NNNLO threshold cross section

$$\delta \sqrt{s}_{peak} \sim \pm 50 {
m MeV}$$
 in PS scheme $\delta R_{peak} \sim \pm 3\%$

• Direct extraction of MS mass suggested

$$\delta \sqrt{s}_{peak} \sim \pm 30 {
m MeV}$$
 in MS scheme

- QCD coupling should be known better than $\delta \alpha_s = \pm 0.0006$ for direct MSbar determination

Backup

MS > PS

