Synchrotron Radiation and Photon Absorbers in the ILC Damping Ring

Stephen Poprocki

Laboratory for Elementary Particle Physics Cornell University Ithaca, NY

31 March 2016

Update

- We revisited the damping ring synchrotron radiation simulations
- \blacktriangleright Using DTC04 lattice and 5 Hz, 10 Hz e^- and e^+ modes
 - Previous results were for DTC03 and 5 Hz mode

Vacuum chamber profile

- The vacuum chamber profile ('wall file') has been updated:
- Format conversion for new Synrad3D
 - Monte Carlo simulation program developed at Cornell for calculating where synchrotron radiation photons are absorbed, in 3D
- Antechamber slopes removed in wigglers to match TDR
- Antechambers implemented as subchambers, and now fully absorbing
 - Previous version was meant to have absorbing antechambers but not implemented correctly
- Photon absorbers now include longitudinal antechamber ramps

Wiggler region layout

There are 27 wiggler pairs and 30 photon absorbers with one special downstream photon absorber after the first bend (#31 in plots below)

Results

Results

Mode	Max photon stop	Downstream photon stop	Total wiggler region
	absorbed power [kW]	absorbed power [kW]	absorbed power [MW]
5Hz	50	89	1.5
10Hz e	75	108	2.1
10 Hz e $^+$	105	124	3.0

These are per 0.4 A of beam current

- To get the luminosity upgrade numbers, multiply by 2 (except for e⁺ if 2nd positron ring is built)
- The average power absorbed in one arc region is 0.18 kW/m (a total of 150 kW)

Conclusion

- Antechambers and photon absorbers result in very little radiation absorbed outside of the photon absorbers
- First photon absorber is not necessary for 5Hz mode but is for 10Hz
- Peak power load on photon absorbers may be very large, especially on bottom ramp
 - Can the design handle this?