Forward ECal Occupancy Study & Geometry Redesign Follow-up

Christopher Milke George Courcoubetis Bruce Schumm UCSC/SCIPP 59th SiD Optimization Meeting March 3, 2016

Event Types Included

Pair Backgrounds

Gamma-gamma to Hadron

BhaBha

Singly tagged events:

Low Cross-section

Raw Occupancy: Number of channels across all layers (y-axis) which were hit exactly the given number of times (x-axis), across a luminosity upgrade train's (2624^{*}) worth of bunch crossings.

Note: All other plots are also over a LU train.

*Individual event rates calculated as: Luminosity_{train} * Cross_section_{Event}

```
where Luminosity<sub>train</sub> =
Luminosity/frequency =
3.6*10^{-34} cm<sup>-2</sup> s<sup>-1</sup> / 5Hz =
7.2*10^{-6} fb<sup>-1</sup>.
```

Pairbackgrounds rate was once per bunch crossing

Raw Radial Occupancy:

As before, but with number of channels also now given as a function of radius (channel frequency given by color)

Radial Occupancy

PairBackgrounds Radial Occupancy

Low_Cross_Section Radial Occupancy

Gamma_Gamma->Hadron Radial Occupancy

BhaBha Radial Occupancy

Raw Layer Occupancy:

As before, but with number of channels also now given as a function of layer (channel frequency given by color)

Per Layer Occupancy

PairBackgrounds Per Layer Occupancy

Low_Cross_Section Per Layer Occupancy

Gamma_Gamma->Hadron Per Layer Occupancy

BhaBha Per Layer Occupancy

Integrated Occupancy / Buffer

Depth: The ith bin contains the fraction of channels which were hit 'i' times *or more*. i.e. bin 2 contains the fraction of channels hit 2 times plus the fraction hit 3 times plus ... plus the fraction hit 12 times.

Fraction of Tiles Losing Information as a Function of Buffer Depth

Radial Integrated Occupancy: Like the previous plot, but as a function of radius, with the fraction given in color

Per Radius Integrated Occupancy

Layer Integrated Occupancy: Like the previous plot, but as a function of radius, with the fraction given in color

Per Layer Integrated Occupancy

Weighted Integrated Occupancy:

The ith bin contains the number of <u>hits</u> that are lost with a given buffer depth. Specifically,

 $Bin_{i-1} = \sum_{j=i}^{12} [(frequency_i)^* (j-i+1)] / totalHits$

where frequency is the number of times ϵ channel received *i* number of hits. So (*frequency*_{*i*} * *i*) equals the number of times the channel was hit.

note: The individual event types do NOT add linearly.

Fraction of Hits Lost as a Function of Buffer Depth

Geometry Redesign Follow Up

Tested BeamCal Reconstruction Efficiency and Vertex Endcap/Barrel Occupancy with BeamCal Plug Region removed, and with anti-did field

BeamCal Total Reconstruction Efficiency

Vertex Endcap Radial Occupancy for 5 Bunch Crossings Various geometries with pixel size of 30x30 microns

