

CR-011 Positron Source

- Two main points being proposed
 - Change in the layout (lattice) of the positron beam line (order of some subsystems)
 - Change in the RF configuration of the the 5GeV booster linac (PBSTR)

CRP will treat these independently

CRP membership:

- Dimitri Delikaris (CERN)
- Nick Walker (DESY, chair)
- Mark Woodley (SLAC)

CR-011 CRP history (to date)

- 1st meeting 22.01.2016
 - CRP members only (Delikaris, Walker, Woodley)
 - Produce set of questions for proposers (requests for clarification)

- 2nd meeting 03.03.2016
 - CRP+proposers (Kuriki, Okugi)+CA (List)
 - Q&A and clarification session

Status: Layout changes

- Shift PBSTR ~500m upstream
- Move Energy
 Compressor System
 (ECS) to main
 tunnel section.
- Note: Path Length
 Adjustment chicane
 (PLA) already
 implemented as
 part of CR-0004.

Main rationale (at least for CR):

Beam dynamics

Main issue:

- Cryogenics for PBSTR
- CFS

Status: Layout changes

- Formal review hindered by
 - Lack of more detail design / complete lattice for layout
 - Lack of tracking studies to support beam dynamics claims
 - ▶ Lack of information concerning cryogenic solution
 - ▶ Lack of any cost impact information
- TDR comparison:
 - ▶ TDR lattice evolved from RDR design (pre SB2009)
 - Current proposal should be better (probably not worse)
 - Very vague concept for Central Region cryo will work equally well (or not) for shifted booster (longer He transfer line)
- As with all central region, more detailed solutions for CFS/Cryo need to be developed (including costs)
 - ▶ This layout is probably as good a starting point for this as the original TDR
- Tentative recommendation: adopt this as conceptual layout for further detailed central region work
 - Caveats taken from above

5 GeV booster reconfiguration

Proposal seems to present

- Reconfiguration of gradients / module kinds
- ▶ Plus an additional 3 modules for "back-up"

	TDR D*0972665		Proposal?	
	Number	G (MV/m)	Number	G (MV/m)
C4Q4	6	27.4	6	27.0
C8Q2	8	23.2	9	27.0
C8Q1 (Standard Type B)	12	23.8	9	27.0

Rationale for reconfiguration not clear

- Quadrupole strengths?
- ▶ Klystron power?
- Coupler forward power?

▶ 3-module "Back-up" for availability?

▶ Klystron/modulator availability already high enough. Is additional "RF unit" really required?

▶ Tentative CRP recommendation

- ▶ Too unclear to judge: **reject** as presented.
- ▶ Should form a separate dedicated CR once booster design (requirements and rationale) have been better developed.

Additional comments

On overal CR

- Immature design made review life difficult.
- Came down to very superficial change request to shift some components around.
- Very little detail available.

On Cryogenics

- Impossible to judge "impact" of change
 - No real solution in TDR either
- Important that overall cryo solution be found for central region, which can then be reviewed by experts.

On costs

- Impossible to judge (no cost breakdown submitted beyond simple lattice arguments)
 - CRP agrees these are likely to be "in-the-noise" cost neutral.
- Primary cost impact are likely CFS and cryo, neither of which are mature enough to judge.