The LHCal MC simulation Updated results

Vladyslav Lukianchuk¹

TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV DEPARTMENT OF NUCLEAR PHYSICS

4-May-2016

4-May-2016

¹vladyslav.lukianchuk@desy.de

V. Lukianchuk (KNU)

Outline

1 Introduction

- 2 Detector response vs initial energy
- 3 Energy resolution

4 Conclusions

5 The next steps

Introduction: Current status

- Energy deposition W, Fe within 1 GeV 20 GeV
- Detector response vs initial particle energy (linearity observed)
- Energy deposition vs Z axis (energy leakage observed)
- Energy resolution studied (for Fe better compare to W)

- Energy deposition W, Fe for 50 GeV, 100 GeV
- Check linearity of detector response within 1 GeV 100 GeV
- Energy resolution studied within 1 GeV 100 GeV

・ロト ・日ト ・ヨト

V. Lukianchuk (KNU)

LHCal study

Introduction: Updated features

- An initial particle K, 5 GeV
- The interaction with beam pipe causes a formation of e, γ

Introduction: Updated features

• Only events "initial particle — the LHCal" were chosen

V. Lukianchuk (KNU)

4-May-2016 5 / 17

Detector response vs initial energy: Data fitted by $E_{deposition} = A \cdot E_{init}$

Particle	χ^2/ndf	A
е	22,76/6	$21,64\pm0,02$
π	4533/6	$11, 38 \pm 0, 24$
K	5572/6	$11,05\pm0,27$

Particle	χ^2/ndf	A
е	4,377/6	$9,01\pm0,01$
π	267,4/6	$7,94\pm0,06$
ĸ	132,7/6	$7,50\pm0,04$

Fe

W

Energy resolution: Data fitted by $\frac{\Delta E}{E} = \frac{A}{\sqrt{E}} \oplus B$

Particle	A	В
е	$0,185\pm0,003$	$0,032\pm0,002$
π	$1,15\pm0,14$	$0,32\pm0,05$
K	$1,07\pm0,07$	$0,28\pm0,03$

Particle	A	В
е	$0,401 \pm 0,004$	$0,001\pm0,05$
π	$0,46\pm0,05$	$0,17\pm0,03$
ĸ	$0,41\pm0,05$	$0,20\pm0,02$

Fe

V. Lukianchuk (KNU)

Conclusions

- The simulation for e, π, K within 1-100 GeV done for Fe, W
- The linear response of the LHCal is observed
- The energy resolution of the LHCal studied for Fe, W

The next steps:

- Summarize obtained results regarding the LHCal study
- Writing the master thesis

Backup slides

V. Lukianchuk (KNU)

LHCal study

4-May-2016 9 / 17

Detector response vs initial energy:

Data fitted by $E_{deposition} = A \cdot E_{init}$

Detector response vs initial energy:

Data fitted by $E_{deposition} = A \cdot E_{init}$

Fe

W

Detector response vs initial energy:

Data fitted by $E_{deposition} = A \cdot E_{init}$

Energy resolution:

Data fitted by
$$\frac{\Delta E}{E} = \frac{A}{\sqrt{E}} \oplus B$$

Energy resolution:

Data fitted by
$$\frac{\Delta E}{E} = \frac{A}{\sqrt{E}} \oplus B$$

Energy resolution:

Data fitted by
$$\frac{\Delta E}{E} = \frac{A}{\sqrt{E}} \oplus B$$

Fe

W

V. Lukianchuk (KNU)

Energy deposition in the LHCal vs Z: Initial energy -100 GeV

Energy deposition in the LHCal vs Z: Initial energy -100 GeV

