## Pixel TPC: Analysis of the 2015 & 2014 Test Beam data

0

Peter Kluit, Michael Lupberger, Jan Timmermans

Based on results presented in the PixelTPC meeting nr 22 on 10 March, and 23 on 21 April

https://agenda.linearcollider.org/event/7063/



#### Introduction: questions

- Study the performance of the test beam data
  - Octoboards modules (96 chips) 2015 data
  - Octopuce 2014 (only 8 chips) data
- Can we reach the design resolution?
- What is the size of deformations?
  - What is their source and how do we control them
- Learn lessons on how to build the next module
- The reason for discussing not only the 2015 but also the 2014 data is that in the last data set we can show that we can reach the design resolution on a small scale



## Test beam data (B=0) 2015

- Analysis of the pixel test beam data
- Description of the setup (picture next slide)
  - 10 octoboards consisting of 2 x 4 chips
  - Geometry y along radius of the TPC: x orthongonal
  - z from time measurement 25 nsec clock
- Start by a zero B field run: straight tracks
- Run 000102\_150402 offset z is 6 cm
- Typically track crosses 2 x 10 Chips
- Cannot align all chips in an octoboard because only 2/8 are illuminated by the beam
- Use of new "rotated flipped" GEAR geometry file

#### Chip layout in the test beam





### Neighbor hits in Chips

- To reach the design resolution a hit should not be double counted or fire neighbor pixels.
- In the "raw" test beam data we plotted the distance between the hits and found a large spike at low distances
- These hits are not evenly distributed over the chip and have to be removed. Choose hit with largest charge deposit



### Data selection & cleaning

#### Method and selections (B field 0 run)

- Select a track through chip 17 and 141 with more than 100 hits. For these ref. chips the beam is far from the edges. NB tracks near edges give a large biases on residuals.
- Reject chips tracks that cross the x edges within plus or minus 3 s.d. (0.8 mm) So keeping only chips where all the expected hits should be found.
- Select only clean tracks with cuts on delta phi, z0 and d0. Reject double tracks with too many hits.
- From the track parameters I calculate the expected beam profile on the chip assuming a Gaussian of 0.8 mm This gives the expected nr hits on the chip in pixel units. - The hits that are actually found are also stored - The relative efficiency is the division of the found/expected.

# The best chip = reference hip 17 relative efficiencies



#### Reference chip 2 Starting point for Chip 141 relative efficiencies



# Bad low efficiency chip 69 relative efficiencies



# Bumpy efficiency chip 10 relative efficiencies



# Wiggly efficiency chip I 53 relative efficiencies





#### Summary hits per cm

| Chip | hits trunc/cm | data events |
|------|---------------|-------------|
| 1    | 73.9338       | 69106       |
| 6    | 79.1688       | 40586       |
| 10   | 96.7501       | 12220       |
| 13   | 100.465       | 55536       |
| 17   | 113.648       | 119910      |
| 22   | 90.3515       | 86673       |
| 29   | 100.309       | 6896        |
| 66   | 78.1015       | 80896       |
| 69   | 49.6105       | 31555       |
| 82   | 91.9668       | 49731       |
| 85   | 89.9473       | 94299       |
| 90   | 89.5151       | 93416       |
| 93   | 89.8862       | 94295       |
| 134  | 75.3125       | 78250       |
| 138  | 88.3866       | 92389       |
| 141  | 102.99        | 107670      |
| 150  | 84.1619       | 5782        |
| 153  | 66.4043       | 34409       |

#### For an electron one would expect 1.4 times 100 hits/cm



## Alignment and resolution per chip

Method:

- full fit through chips 17 and 141 propagate errors (assume 0.8 mm per hit)
- Fit through the reference chip ONLY
- Shift and rotate the chips (align)
- Calculate residual of reference chip wrt full fit
- Pull = residual / expected error (from full fit and chip)





### Resolution per chip

#### 0.7 mm per hit

| Chip | resolution(mm) | pull    |             |
|------|----------------|---------|-------------|
| 1    | 0.125737       | 1.21765 |             |
| 7    | 0.135288       | 1.23106 |             |
| 10   | 0.241599       | 2.37582 | bumpy chip  |
| 13   | 0.115116       | 1.20874 |             |
| 22   | 0.10159        | 1.14296 |             |
| 66   | 0.104411       | 1.24057 |             |
| 69   | 0.114359       | 1.175   |             |
| 82   | 0.10318        | 1.1957  |             |
| 85   | 0.108777       | 1.31491 |             |
| 90   | 0.104571       | 1.37221 |             |
| 93   | 0.109144       | 1.33306 |             |
| 134  | 0.116371       | 1.214   |             |
| 138  | 0.110914       | 1.19965 |             |
| 153  | 0.168231       | 1.486   | wiggly chip |



#### Resolution per chip using all good chips

| Chip | resolution(mm) | pull    |                    |
|------|----------------|---------|--------------------|
| 1    | 0.107619       | 1.36837 |                    |
| 6    | 0.115158       | 1.31589 |                    |
| 13   | 0.0970513      | 1.27545 |                    |
| 17   | 0.0835968      | 1.27783 | (was used as Ref1) |
| 22   | 0.0926846      | 1.22985 |                    |
| 66   | 0.0908516      | 1.24745 |                    |
| 69   | 0.112894       | 1.1796  |                    |
| 82   | 0.0877         | 1.21932 |                    |
| 85   | 0.0936347      | 1.33343 |                    |
| 90   | 0.0880832      | 1.29956 |                    |
| 93   | 0.0886049      | 1.28664 |                    |
| 134  | 0.0966038      | 1.22604 |                    |
| 138  | 0.101433       | 1.3333  |                    |
| 141  | 0.0986377      | 1.4322  | (was used as Ref2) |

Improved precision use all other chips to predict position and angle in a chip

#### **Resolution selected chips**



On average the resolution per chip is 92  $\mu m$  and the average pull is 1.3. The expected precision is 70  $\mu m$ . This means that per chip we have a systematics per chip of 60  $\mu m$ .





Split the tracks into three pieces according to the Modules: Inner – Middle – Outer modules

Fit Inner + Outer-> get track parameters and errorsFit Middle-> get track parameters and errors

The sagitta = residual at the Middle position

The sagitta shows what happens if we combine all the measurements. The pull = sagitta/expected error tells how well we do: remaining systematical errors

#### Sagitta analysis



imperfections

#### Sagitta analysis results 2015

• The phi results per module are: fitted resolution 0.075 mrad expect 0.06 mrad with a fitted pull of 1.2. Conclude: the phi systematics is rather small: only 0.04 mrad

•The  $\sigma$  sagitta fitted is 67 µm; we expect 32 µm. The pull is fitted to be 1.7.

Conclude: we have additional systematics per module of 58  $\mu$ m. This is quite large.

Note that per chip we have already a 92  $\mu m$  fitted resolution. At that level there was already sign of the presence of systematics of 60  $\mu m$ .

The reason for the systematics is most likely E field deformations that affect the chip and module resolution
Some of the deformations can be clearly seen in the hit maps
The deformations are mostly caused by electro-mechanical

#### Analysis of 2014 Octopuce data

- Analysis of the pixel test beam data 2014
  - 2 octopuce boards consisting of 2 x 4 chips
  - Geometry x along radius of the TPC: y orthogonal
  - z from time measurement 25 nsec clock
- Look at B field I Tesla runs with z = 1 cm and 2.5 cm
- Runs 4178 Icm 4177 2.5cm
- Typically track crosses 2 x 4 Chips







### Chip performance

- Studied by performing a straight line fit to the hits in one octopuce board (max 8 chips in practice 4 chips)
- NB inside an octopuce board for a 6 GeV electron the curvature is small
- chips I-8 "G03\_W0062\_H" 9-16 = "K06\_W0062\_H"
- Reference chips are 3, 4, 11 and 14
- Require > 25 hits in each ref chips (so e.g. 3 and 4)
- Track cleaning cut |d0| < 5 mm and |phi -2.645|<0.2
- Just shifted residuals in xy for chips 5, 6, 12 and 13 shifts: 0.15 0.2 0.07 0.04 mm accounts for dead space between chips and shifts
- Residuals in xy larger than 0.5 mm are removed

100 microns resolution per hit









Chip 4

30

25

20

15

10

n

104.7 / 47

1592 ± 10.2

Mean -0.001416 ± 0.000555 Sigma 0.1061 ± 0.0005

 $\chi^2$  / ndf

0.2 0.4 Residual (mm)

0

Constant



25

20

15

10

67.86 / 47

1418 ± 8.9

 $-0.04291 \pm 0.00089$ 

0.1439 ± 0.0010

χ<sup>2</sup> / ndf

Mean

Sigma

0.2 0.4 Residual (mm)

Constant



## Chip 6



#### Where are the good and deformed zones?

Deformations on left and right side of octopuce (13,12) and left (5); right side 6 is good. Top/bottom edges 13,12 and 6 good. Chips in the middle (14,11 and 3,4) are good everywhere.



## Tracking performance

- Studied by performing a straight line fit to the reference Chips 3, 4, 11 and 14 leaving out one of them:
- To study tracking the resolution we fit e.g.: chip 3 only and compare it to one fit to chips 4,11 and 14.
- Tighter track selection with cuts on two octopuce fits :
  - |d0 (xy)| < 5 mm (from 3,4 to 11,14) and vice versa.
  - |phi(3,4)-phi(11,14)|<0.012</p>
- Residuals are corrected for shifts and phi dependence
  - res =  $\pm 30^*$ sin(phi-2.634) shift  $\pm 0.06\ 0.055$
- NB Residuals in xy larger than 0.5 mm are removed
- Fit can propagate errors. Require total error < 0.020 mm
- Assume 100 micron per hit



### Chip 3



## Tracking performance summary

| chip | Resolution<br>(mm) | pull | Phi<br>resolution | pull |
|------|--------------------|------|-------------------|------|
| 3    | 0.030              | 1.7  | 0.006             | 2.2  |
| 4    | 0.025              | 1.6  | 0.008             | 2.1  |
| П    | 0.026              | 1.6  | 0.007             | 1.7  |
| 14   | 0.027              | 1.2  | 0.006             | 1.5  |

- Note correlation between residuals chip 3 and 4.
- We observe a resolution 25-30 microns where we expect on average 16 -20 micron
- Phi is a bit more off, but this has to do with the beam that has a curvature (p) distribution that must show up in |phi Chip – phi full track|



#### Chip 3 z = 25 mm



#### Tracking performance summary z = 25mm

| chip | Resolution<br>(mm) | pull | Phi<br>resolution | pull |
|------|--------------------|------|-------------------|------|
| 3    | 0.030              | 1.3  | 0.006             | 1.6  |
| 4    | 0.026              | 1.3  | 0.007             | 1.6  |
| П    | 0.027              | 1.3  | 0.008             | 1.5  |
| 14   | 0.024              | 1.2  | 0.006             | 1.5  |

- We observe a resolution 24-30 microns where we expect on average 22 micron
- Phi is a bit more off, but this has to do with the beam that has a curvature (p)
- The expected and observed resolutions are closer than for the 1cm data. Due to the diffusion the resolution is 150 microns per hit



#### Module | performance @ 320 V no ExB field deformations!



#### Conclusions

- Resolution for the 1cm data 100  $\mu$  m and for 25mm 150  $\mu$  m per hit
- Per chip we observe a resolution 24-30 microns per chip (chip and track uncertainties) where we expect on average 18 (1mm) 22 (25mm) micron
- This means that deformations or remaining additional systematics per chip are typically less than 20  $\,\mu$  m for both data sets
- By carefully adjusting the E field (320 V data) the deformations at the edges of the board are under control and systematics per chip less than 20  $\mu$  m. Note that the "octoboard" has a syst of 58  $\mu$  m.
- The octopuce meets the design goal of our TPC.
- We need now to build a 100 chip module. For this one needs a high electro-mechanical precision: grid distance above the chip and the positioning of the chip (3D) and guard on the module.
- The basic philosophy is not to correct the ExB deformations, but to minimize them in the design.