ROPPERI

Readout Of a Pad Plane with ElectRonics designed for plxels

Uli Einhaus A common project of DESY and Uni Bonn (Jochen Kaminski) LCWS Santander 01.06.2016

Idea

- For a GEM-based TPC readout: Match readout pitch with dimension of primary ionisation clusters
- Allow for:
 - Improved particle identification by dE/dx
 - Improved double hit/track resolution
- Implementation:
 - Use separate pad plane for high flexibility and large area coverage
 - Use pixel chip for high integration → Timepix

Content

- Idea
 - Cluster counting / particle identification
 - Integration of electronics / Timepix
- Current status

Challenges, plans

Idea: intermediate solution between pads and pixels

- Clusters contain the primary information of the ionisation
- For a GEM-based system: Can we find a solution to resolve clusters?
- What is the optimal pad size to
 - improve double hit and double track resolution,
 - does cluster counting for improved dE/dx?
 - \rightarrow O(200 μ m)

Idea: intermediate solution between pads and pixels

- Clusters contain the primary information of the ionisation
- For a GEM-based system: Can we find a solution to resolve clusters?
- What is the optimal pad size to
 - improve double hit and double track resolution,
 - does cluster counting for improved dE/dx?
 - \rightarrow O(200 μ m)

Cluster counting

- Primary ionization leads to Gaussian shaped clusters / distance distribution depending on dE/dx
- Due to large fluctuations like δ -electrons the charge / distance distribution is Landau shaped → larger RMS → worse correlation with energy loss

Counting clusters allows for improved particle separation compared to

conventional charge counting

M. Hauschild: dE/dx and Particle ID Performance with Cluster Counting; at ILC Ws. Valencia 2006

Cluster counting

- Primary ionization leads to Gaussian shaped clusters / distance distribution depending on dE/dx
- Due to large fluctuations like δ-electrons the charge / distance distribution is Landau shaped → larger RMS → worse correlation with energy loss

 Counting clusters allows for improved particle separation compared to conventional charge counting

M. Hauschild: dE/dx and Particle ID Performance with Cluster Counting; at ILC Ws. Valencia 2006

Cluster counting efficiency: ~25-30%

U. Renz: A TPC with Triple-GEM Gas Amplification and TimePix Readout

Example: Ar:CO₂ 70:30 11 clusters /cm observed 40 clusters /cm expected

Efficiency may be increased with improved clustering algorithms

M. Hauschild: dE/dx and Particle ID Performance with Cluster Counting; at ILC Ws. Valencia 2006

Former Tests with GEMs + pixels

- GEMs + Timepix, by Uni Bonn and Uni Freiburg
 - Charge depositions spread continuously over O(100) pixels (compared to Micromegas)
 - High gains (60k to 100k) necessary for signal/noise

Large pixels by adding metal pads to chip

J. Kaminski: Measurements during the October test beam with the GEM-TPC and Timepix; at RD-51 meeting 2010

Former Tests with GEMs + pixels

- Clusters visible with large pixels → How large can one go?
- Similar to our approach
- But: still need up to 120+ chips per module
- Utilize full chip!
- Utilize full anode area!

Ansatz

- GEMs, small pads, Timepix chip as readout electronics
- Connections from pads to chip are routed through the board, then bump bonded to the chip
- High level of integration
- Allow for "arbitrary" pad sizes → high flexibility

Tasks & Challenges

- Setting up and testing the readout chain
- Design and production of the board → routing from pads to bump bonds is complex already for 1000 channels
- Bump bonds from PCB to chip → pitch of 55μm
- Overall input capacitance should stay small

Status: Hardware

- Timepix chip + readout chain acquired from Uni Bonn and set up
- Based on the Scalable Readout System (SRS) from CERN

Status: Hardware

- Timepix chip + readout chain acquired from Uni Bonn and set up
- Based on the Scalable Readout System (SRS) from CERN

Board design and production

- Design by Jochen Kaminski (experienced from GridPix and GridGEM)
- Production and equipping by DESY
- Boundary conditions set, design will soon begin
- Bonding is done at the KIT bonding lab via gold stud bonding
- 8 chips have been sent to test the bonding technique
- Capillary and gold wire were exchanged from 20μm to 15μm
- First chip successfully bonded:

gold studs octagon: Al opening

Routing

- FR-4-PCB are only usable for a 2D-pitch > 300μm
- The first test board will utilize every 8th pixel in x and y
 - \rightarrow 440µm pitch, 1024 channels
- Still a complicated routing
- Ceramic boards allow for smaller lines O(10μm) and vias O(100μm), but are more expensive and still not small enough
- An intermediate layer or an interposer might help
 - → Silicon wafer → Different chip with larger pitch?
- Line lengths increase the capacitance and the noise

Capacitance

- With growing input capacitance the signal to noise ratio goes down
- Timepix was developed C < O(100fF)
- Capacitances:

Pads: O(0.1pF)

Lines: O(1pF/2.5cm)

BGA connections: O(0.1pF)

• Gain for triple GEM stack: 2k-5k, potential for significant increase

X. Llopart: Timepix Manual v1.0

 Looks feasible, more information required, will be investigated with test board

Intermediate layer: connector board

- Separate pad plane and Timepix by adding an intermediate connector from the pad board to a connector board
- Simpler exchange of pad layout or faulty chip
- Plug connector needs too large force to connect and disconnect → might damage bump bonds
- Zero force insertion, e.g. CPU socket, currently under investigation

Plan

- First board for proof-of-principle of bonding and capacitance
- Second board for proof-of-principle of cluster identification
 - Different pad layouts on one board
 - 10x10 cm², small TPC, radioactive source, maybe test beam

Timepix3

- Simultaneous modes "time of arrival" and "time over threshold"
- To be used after proof-of-principle
- Exchange of information and experience with photon science groups at DESY (member of Timepix3 collaboration)

Summary

- The proposal for a GEM-based high granularity TPC readout was presented
- Significant improvement of integration together with possible enhancement of performance
- Challenges are bump bonding, routing and capacitance
- Design will soon begin, simulations are ongoing
- A less granular chip might be considered, e.g. the KPiX chip
- Long-term goal: LP module

