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Large Prototype TPC and Current Infrastructure

> Test beam area T24/1 at DESY (1-6 GeV e- beams)

> Large Prototype TPC built and installed 

> Infrastructure 
includes a large bore 
1T magnet

 20% X
0
 material budget

> LP field cage parameters:

 Length: 61 cm, Diameter: 72 
cm

 Up to 25 kV → E
drift 

up to 350 

V/cm

 Wall material budget: 1.3% X
0

> The endplate is 
able to host 7 
readout modules 
(dimensions 
~22x17 cm2)
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Momentum resolution measurement

> In the Large Prototype TPC case, 
there is a broad energy spectrum 
due to the energy loss in the 
magnet

> In addition, field inhomogenities 
can cause distortions  

E and B (1 T) fields present
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External Si tracker for Large Prototype TPC

> Prototype for ILD TPC exists at DESY

> Goal: Combined test beam with LPTPC → 
track reference, field distortion corrections, 
momentum resolution measurements

> The Silicon tracker should be versatile and 
simple to be used as a telescope by other 
groups during test beams

Magnet

TPC

> Solution: Build an external Si tracker (Si telescope) to provide reference 
tracks (entry and exit hits) 

> Challenge: The Silicon system needs to fit in the existing infrastructure 
(available space is ~3.5 cm)
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The Silicon Tracker Project 

> Simulation studies to determine the general characteristics of the system

 Number of Silicon layers

 Distance between the Si layers 

 Material budget

 possible dimensions of support structure  

 optimal coverage area 

> Hardware options

 Investigate hardware options to use in terms of sensors (pixels vs strips), chip, DAQ

 The DAQ system will have to be combined with the current TPC one

> Design support for the Silicon tracker to fit in the current infrastructure
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Simulation Studies – Description

> Simulation Studies to determine the general characteristics of the system

> Geant4 simulation to include accurate model of the current material 
budget of the infrastructure

> Magnet and TPC material budget and 
dimensions included

> Multiple scattering on

> A number of Silicon sensors placed in 
between 

> Distance between the silicon sensors varied 
according to limitations (gap of 3.5 cm)

> Thickness of silicon sensors varied (also mimicking material budget of 
support structure)

> Space points of tracks on Silicon sensors used to fit a helix → Moving 
to DD4hep simulation to include ILD track finding&fitting algorithms
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Simulation Studies – Requirements

> Simulation Studies to determine the general characteristics of the system

> For the Si system to be used as a reference, the Si standalone simulated 
momentum resolution should be better than the TPC one

 → Criterion used to define the characteristics of the Si system

> Measuring the momentum 
resolution in standalone Silicon 
system and standalone TPC 
system by fitting a crystal ball 
function to the simulated points

Standalone TPC simulated 
momentum resolution is 
4.58·10-6 MeV-1
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Distance between Si layers

> Dependence of sensor spatial resolution on 
distance between layers

 Momentum resolution shown in units of 10-6 MeV-1

> Sensors with spatial resolution better than 10 μm are needed

ILD ATLAS CMS

<10 μm 12 μm (pixels) 10 μm (pixels)

16 μm (strips) 20-30 μm (strips)
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Coverage area

> Hit positions on front and back sensors for 5 GeV e- beams

> For lower energy beams, the hit distribution on the back sensors is more 
spread and shifted to lower y values

90-95% 
of events
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Coverage area

> Hit positions on front and back sensors for 2 GeV e- beams

> For lower energy beams, the hit distribution on the back sensors is more 
spread and shifted to lower y values

> Minimum coverage area: ~2x2 cm2 for front and 4x10cm2 for back 
sensors

> Larger coverage area is beneficial (e.g. less moving and alignment of the 
system) 

90-95% 
of events
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Simulation – Next steps and Challenges

> Ongoing effort on DD4hep simulation for the 
Silicon tracker in order to obtain more precise 
results in terms of track fitting

> In the future, we will need common simulation 
and reconstruction framework and analysis 
software for the Silicon tracker and the Large 
Prototype TPC (in DD4hep?)
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Hardware Options

> Strip vs Pixel Silicon sensors

Pixel sensors (Mimosa, M. Winter)

> Excellent spatial resolution (3-4 μm)

> Small sensor surface → Able to instrument 
minimum area only

> High cost 

Strip sensors (SiD, M. Breidenbach)

> Good spatial resolution (7-8 μm)

> Large sensor surface → Able to instrument      
large areas (eg 10x20 cm2)

> Medium cost

SilC sensor  
50 μm pitch     
(Th. Bergauer)
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Hardware Options (2)

> Si strip sensors of 25 μm 
pitch (4K strips) → spatial 
resolution 7-8 μm

> Read out by two kpix chips 
bump bonded onto the 
sensor

> Control of sensor and kpix 
through wire bonding

> Kapton cable to read out 
the data from kpix and 
control the kpix and sensor

10 cm
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KPiX cycle

> KPiX works on self-trigger or forced trigger mode

> How efficiently can we use it in the test beam (with the TPC) with such a 
cycle?

 TPC receives external trigger and then goes to BUSY for data acquisition, reading, 
storing 

Start-up

~700 μs

~3K bunch 
trains

~1 ms

Storing data Reading out Switching 
off

~10 ms

This can be 
increased 

to a few ms

Possibility to write and read 
out only 1 buffer? This would 

reduce the time

~1 ms ~190 ms

Can be 
reduced to 

~0

> KPiX developed for an ILC environment
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Currently at DESY

> Test system to be set up that includes

 DAQ board able to control 30 KPiX 

 KPiX

> ECal sensor bump bonded to KPiX

> Mechanical prototype of Silicon tracking sensor bump bonded to KPiX

 For design of structure support, local tests on bump/wire bonding

> Negotiations with Hamamatsu for a production of sensors (SLAC)
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Hardware and DAQ Challenges

> Acquiring sensors with spatial resolution <10 um

> Scheme for efficient use of KPiX in combination with the TPC 

 Different acquisition cycles

> Combination of the two DAQ systems (Si & TPC) in order to be able to 
have combined test beams in the future
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Conclusion

> Silicon tracker to accompany the Large Prototype TPC needed

> Simulation studies in order to define the characteristics of the system

 >4 Silicon layers

 Sensors with 10 μm or better spatial resolution

 Large coverage area 

> Hardware 

 25 μm pitch Silicon strip sensors (discussions with SLAC-Hamamatsu. ~few months)

 KPiX + DAQ board at DESY (system setup starting next week)

> Ongoing effort

 Simulation studies within DD4hep (track finding and fitting)

 Efficient use of KPiX at DESY test beam

> Next steps

 Use of EUDAQ for the Silicon tracker (first steps in the upcoming weeks)

 Design of mechanical support for the telescope (waiting for Hamamatsu discussions 
since it also depends on sensor choice) 
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BackUp
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KPiX – Simplified Block Diagram
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KPiX – Charge Amplifier Block

> The incoming signal is picked up by the charge 
amplifier and stored in the feedback capacitor (default 
ranges 100 fF and 400 fF).

> If the default range is exceeded, a 10 pF capacitor is 
automatically added to the feedback to extend the 
range to 10 pC.

> For negative-polarity signals, an inverter is inserted 
after the charge amplifier. The polarity of the 
calibration signal is reversed too.

> For DC-coupled signals, the leakage is compensated 
by a servo circuit. The amount of leakage is 
determined with no signal present and held during the 
signal period.

> A precision calibrator sends up to four signals with 
amplitudes and timings as defined during the set-up 
cycle.

> Digital reset during power-up and after each triggered 
event. Can be executed before each beam bunch for 
ILC operation.

> Option for DC reset for non-bunched signals, e.g. 
cosmic rays, radioactive source data.

> Periodic and digital resets are inhibited immediately 
after each trigger (controlled by the acquisition block)..

From D.Freytag



Dimitra Tsionou  |  ECFA 2016  |  31-May-16  |  Page 21

KPiX – Data Acquisition Logic

> The charge amplifier signal is amplified, shaped and 
sent to the trigger stage. 

> For signals above trigger threshold, the digitally 
controlled acquisition cycle is started. After a wait 
period, the signal is acquired in the storage capacitor. 
The coupling elements form a low pass filter. Two 
integration constants (0.5 us and 0.2 us) can be 
selected.

> One of two threshold levels is selectable in each cell. 
High-low discrimination system to catch potential 
triggers early to inhibit digital and DC resets.

> For the tracker application, the trigger is carried over 
to the neighboring cells to catch low level spill-over 
signals below trigger threshold. 

> After a programmable time interval, the signal 
amplitude is held in the capacitor and control passed 
to the next storage capacitor.

> The integration interval is thus precisely controlled, 
resulting in a stored amplitude proportional to the 
signal, even if the asymptotic value is not reached.

> A strobe signal is sent to the memory block to record 
event time.

> Amplitude and time information for up to four events 
can be stored for each data cycle.

From D.Freytag
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KPiX – ADC and Digital Storage

> The analog information previously stored in 4x1024 
capacitors is digitized  in four cycles, each for 1024 
capacitors in parallel.

> The Wilkinson method is used for the conversion, 
with a current mirrored into each cell running down 
the charge in the storage capacitor. A ramp-
threshold discriminator detects the transition 
through zero and causes the content of a common 
Gray counter to be stored in memory.

> The ADC has 13 bits resolution.

> This method of digitization could proceed 
independently in each cell, offering the possibility of 
continuous operation. The four buffers in each cell 
could be filled and read out on a rotating basis. This 
would require a major upgrade of the digital core.

From D.Freytag
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Time Projection Chamber – Working Principle

> Magnetic field parallel to the electric field

> Inhomogenities in Electric & Magnetic fields can cause distortions (ExB 
terms)

E B
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Field distortions in TPC

> Inhomogenities in Electric fields can cause distortions 

> Magnetic field parallel to the electric field

 ExB terms pronounced at module edges

GEM1

Drift direction

3 mm gap

field shaper

GEM2

Dummy 
module
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Distortions in TPC tracks

E field only E and B (1 T) fields present

> A straight fit is used for the 
track → full distortions for 
electric field are visible

> A curved fit (helix) is used 
for the track → distortions 
can be partially absorbed in 
the track curvature
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Alignment and Distortions

> Displacement and rotation of GEM 
module

> Use B=0 T data where ExB effects not 
present

> Corrections of 0.1 mm and a few mrad

> Distortions derived from 10% of 
events and applied to the rest
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