Report from MDI workshop at SLAC

Karsten Büßer

ILC@DESY Project Meeting 21th January 2005

87 Participants:

12 from Asia 24 from Europe • 5 from DESY (HH: 2, Z: 3) 51 from the US • 29 from SLAC

ILC@DESY Project Meeting

Program Overview

Main MDI topics \Rightarrow sessions

- Energy and luminosity spectrum
- Polarimetry
- Very forward region
- Backgrounds
- IR layout, crossing-angles
- Beam RF effects

S. Boogart, K. Kubo K. Moffeit, K. Mönig W. Lohmann, H. Yamamoto K. Büsser, T. Maruyama T. Tauchi, A. Seryi M. Woods

Important connected topics \Rightarrow overview talks

- Physics options (+ other issues)
- Detector concepts
- Beam optics & collimation
- Luminosity optimization

- A. de Roeck
 - M. Oreglia
- S. Kuroda
- P. Burrows

Energy and Luminosity Spectrum

ILC@DESY Project Meeting

Definition of E_{CM}bias (Beamsstrahlung OFF)

$$E_{CM}^{Bias} = \frac{\left\langle E_1 \right\rangle + \left\langle E_2 \right\rangle - \left\langle E_{CM}^{lum-wt} \right\rangle}{\left\langle E_1 \right\rangle + \left\langle E_2 \right\rangle},$$

 E_1 and E_2 are beam energies measured by the energy spectrometers. (ISR and beamstrahlung are turned off for this study.)

Definition of E_{CM}bias (Beamsstrahlung ON)

LC Machine Design	<e<sub>CM^{bias}> (∆y = 0)</e<sub>	σ(E _{CM} ^{bias}) (∆y = 0)	Max(E _{CM} ^{bias}) vary ∆y, η _y
WARM-500	+520 ppm	170 ppm	+1000 ppm
COLD-500	+50 ppm	30 ppm	+250 ppm
NLC'-500 0 ppm		20 ppm	<50 ppm

Summary of E_{CM}^{bias} without Beamsstrahlung

Summary of E_{CM}^{bias} in presence of Beamsstrahlung

LC Machine Design	<e<sub>CM^{bias}> (∆y = 0)</e<sub>	σ(E _{CM} ^{bias}) (∆y = 0)	Max(E _{CM} ^{bias}) vary ∆y, η _y	
WARM-500	+960 ppm	150 ppm	+ 1120 ppm	
COLD-500	+150 ppm	30 ppm	+350 ppm	
NLC'-500	~0 ppm	20 ppm	<50 ppm	

→ Energy spectrometers and Bhabha acolinearity alone are not sufficient to correct for this bias. Need beam dynamics modeling and other input from annihilation data, disrupted energy measurements, …

Energy Spectrometers

Polarimetry

Polarimetry

- 3 ways to measure polarisation: upstream, downstream, data
- issues to understand:
 - difference of incoming, outgoing and luminosity weighted polarisation
 - $-\operatorname{correlations}$ between electron and positron polarisation
 - polarimeter corrections for data methods
- more concrete questions:
 - is downstream polarimetry with 2 mrad crossing angle possible?
 - if no, is upstream polarimetry enough?
 - $-\operatorname{can}$ we believe CAIN for depolarisation?
 - do we understand the polarisation transport well enough?
 - backgrounds
 - light sources for different polarimeters (backgrounds, correlations)
 - switching between IRs, how, how often?
 - real designs
 - common issues with beam energy/lumi spectrum: correlations between beams, momentum-polarisation correlations

1

MDI workshop SLAC, January 2005

Klaus Mönig

Depolarisation

Depolarisation for interacting particles: ~0.3% Depolarisation for spent beam: ~1%

ILC@DESY Project Meeting

TESLA Design

• Minimal space and no special magnets required

• Need to change laser wavelength for z-pole running

Chicance Polarimeter

Upstream Polarimeter Chicane

- Requires ~50 meters length
- Same B-field at Z-pole, 250 GeV and 500 GeV running
- Same magnet design as for upstream energy chicane
- Good acceptance of Compton Spectrum at all energies without changing laser wavelength

Polarisation at both IPs?

K. Büßer

ILC@DESY Project Meeting

$\theta_c \neq 0 \implies$ solenoid steers + spin precesses

IP y angle ~ 100 μ rad IP y offset ~ - 20 μ m $\sigma(\theta_v)$ ~ 85 μ rad $\sigma(y)$ ~ 3 nm

spin precession ~ 60 mrad if uncorrected \rightarrow ~ 0.2 % depolarization with perfect beams (or else larger)

Option for local correction with extra dipole fields within the detector + before + after

- Adds ~ 0.01 of B_z along x in detector
- TPC tracking \rightarrow map B_z to 0.0005 to control distortions
- Larger backgrounds and steering of the spent beam

Very Forward Region

Beamstrahlung Pairs

- Observables (examples):
 - total energy
 - first radial moment
 - thrust value
 - angular spread
 - $E(ring \ge 4) / Etot$
 - E / N
 - left/right, up/down,
 forward/backward asymmetries

Analysis

ILC@DESY Project Meeting

Backgrounds

Personnel Protection from Muons

Problem: Occupy one IR hall while beam is being delivered to the other IP

Shielding Condition	500 GeV CM	1 TeV CM	
	(mRem/hr)	(mRem/hr)	
No shielding	0.9	1.5	
18 m steel walls	0.03	0.12	
5 m magnetic spoilers	<0.01	0.04	

Hardware to keep the primary beam from entering an occupied IR

L. Keller

1. A series of protection collimators and stoppers such that all possible missteered beams are confined to a collimator or stopper.

2. All dipoles in the big bend and energy collimation sections locked off.

- Background seems tolerable for both crossing angle schemes
- KB: Backgorunds at 20 mrad are larger than in 2 mrad:

Conclusions

- 15% in Vertex Detector
- 50% in TPC
- even more in FTDs (but on lower level)
- Backgrounds are asymmetric at 20 mrad

IR Layouts, Crossing Angles

Strawman Model

Recommendations from the WG4

Tentative, not frozen configuration, working hypotheses, "strawman"

Discussion on angles between the Linacs was again hot:

- Multi-TeV upgradability argument is favoured by many
- Small crossing angle is dis-favoured by some

20mrad Extraction Scheme

Y. Nosochkov et al.

Beam optics

- L^{*}_{ex} = 15 m free space after IP (an 8 m option also exists).
- At the 2nd focus: $\eta_y = 2 \text{ cm}$, $R_{12} = R_{34} = 0$, $R_{11} = -3.1$, $R_{33} = -2.4$.
- Dump is assumed at 188 m after IP, but its location may be changed.

2mrad Extraction Scheme

R. Appleby et al.

Civil Engineering Issues

T. Markiewicz MatLab Tool to study constraints from civil engineering

ILC@DESY Project Meeting

Civil Engineering Issues

-64

International Linear Collider at Stanford Linear Accelerator Center Conventional Facilities Design Development

Near Surface Interaction Region Concepts

Second Most Critical Structural Dimension is in X 🔶 ~ 4.5 m

Beam RF Effects

Beam RF Effects

Significant impact on:

- RF shielding for beamline and detector components
- Detector design
- Signal Processing and DAQ architecture

	SLC	PEP-II e+	ILC	Detector
Electrons/Bunch, Q	4.0 x 10 ¹⁰	5.0 x 10 ¹⁰	2.0 x 10 ¹⁰	physicists MUST study this seriously together with the accelerator experts
Bunch Length, σ _z	1 mm	12 mm	0.3 mm	
Bunch Spacing	8 ms	4.2 ns	337 ns	
Average Current	0.8 μA	1.7 A	50 μA	
(Q/σ _z) ² relative	92	1	256	

Beam Test at SLAC ESA to further investigate this is proceeding:

- with SLD's VXD3 and with simpler beampipe
- strong desire for this from international vertex community
- can provide important information for VXD design and for signal processing/DAQ for all LC Detector systems

My personal conclusion

- MDI/BDIR working group is very active
- Some design issues are under heavy debate, e.g.
 - Small crossing angle
 - Multi-TeV upgradability
- Still a tendency to make recommendations without proper grounding to the physics/detector groups
- Next milestones:
 - LCWS2005 at SLAC: 18.-22. March 2005
 - BDIR workshop at RHUL: 20.-23. June 2005
 - Snowmass: 14.-27. August 2005
- Goal is to finalise all CDR relevant design issues at Snowmass latest