PETRA laserwire update

BESSY

T. Kamps

CERN

T. Lefevre

DESY

H. C. Lewin, S. Schreiber, K. Wittenburg, K. Balewski

Oxford

N. Delerue

Royal Holloway (UL)

G. Blair, G. Boorman, J. Carter, F. Poirier, M. Price, C. Driouichi

University College London (UL)

S. Boogert, S. Malton

2/18/2005

1

Introduction

- Non invasive Beam size measurement essential for linear collider
 - Determination of beam emittance
 - Wire-scanners will not withstand the beam intensity
- Laser-wire
 - Compton scattering of laser light from electron beam
 - Measure rate of either
 - Compton photons (colinear with particle beam)
 - Degraded electrons (does not require a beam bend)
 - Investigate technology for deployment at light sources and ILC
 - Test system at PETRA
 - · Develop technologies required
 - Scanner
 - Laser

2/18/2005

PETRA accelerator

- Positron Electron Tandem Ring Accelerator
- Long free straight section
- Easy installation of hardware due to existing access pipe and hut outside tunnel area
- New IP chamber with viewports and button BPM
- Dedicated beam time between HERA fills

	HERA U = 6.3 km
	, PETRA
	PETRA U = 2.3 km
	e DETECTOR
C	QUAD

Energy		
Bunch Length		
Charge/bunch		
Hor. beam size		
Ver. beam size		

Overview of PETRA system

2/18/2005

Laser

- Re-claimed from CERN, LEP polarimeter (B. Dehning)
- Q-switched Nd:YAG with SHG
- Complete refurbishment at Oriel workshop, new YAG crystal
- External trigger unit CERN/RHUL
 enabling synchronisation with PETRA
 timing
- Transverse mode quality poor with M² ~ 10 to 15
- Longitudinal mode quality ± 20%, mode beating with picosecond substructure
 - − ~60 ps

Wavelength	λ/nm	1064/532
Energy	E/mJ	250/90
Pulselength	dt/ns	10
Rep rate	f _{rep} /Hz	up to 30
Beam size	$\sigma_{x,y}$	≤ 1 mm

2/18/2005

Focusing and scanning optics

- Scanner
 - Piezoelectric tilt platform from PI
 - Angular tilt range
 - ±2.5 mrad
- LAP125 focusing lens from CVI
 - CCD measurements indicate laser beam size at IP
 - σ=36μ**m**

Previous measurements (Dec 2003)

- Two runs 7 GeV
 - Bunch pattern 14 x 1 bunch evenly filled
 - Low current
 - 7.1 mA, first bunch 0.458 mA
 - High current
 - 40.5 mA, first bunch 2.686 mA
- Sloped Background + Gaussian signal, approximation of beam shape
 - σ_m = (68 ± 3 ± 14) μ m at low current
 - σ_m = (80 ± 6 ± 16) µm at high current
- Manual control of scanner and DAQ systems
 - Single scan took ~30 minutes

New beam pipe window

- Calorimeter energy spectrum indicated that the photos produced at the IP were not reaching the detector
 - Geant 4 simulation of the beam pipe, detector and Compton process,
- Need for a new vacuum pipe with window for Compton photons
 - Installed Janurary
 - Difficult job due to beam pipe curvature and SR heat load on the window
 - Solution found with impressive welding!
 - Big thanks to DESY

New data (Feb 2005)

- Improvements in the last year
 - Upgraded data acquisition system
 - Laser improvements and fixes
 - Temporary repair for cracked window
 - Resonator rear mirror tuned
- New data from the last few days
 - 11/02/05
 - First fast scans with piezo electric deflector
 - 16/02/05
 - More automated DAQ
 - Included BPMs into readout
 - Bump scan to cross check
 - 17/02/05

2/18/2005

- Included Photodiode in tunnel
- CCD cameras monitoring a second IP-like laser focus

- Data taking procedure
 - Trigger
 - Laser trigger sequence derived from PETRA bunch clock and revolution clocks (131kHz)
 - Trigger piezo movement from laser trigger (30Hz)
 - Move piezo to new angle
 - Take data with
 - Compton calorimeter
 - Local BPM
 - CCD cameras
 - PETRA (bunch currents etc)
 - Drive scanning platform though full sinusoidal oscillation taking data
- Problems gating the digitisation on the calorimeter compared with scanner (see next slides)

Fast scanning results (very preliminary)

- Data from 11/02/05
- PETRA conditions
 - 7 GeV, 1 bunch
- Scan
 - 100 scan points
 - 10 triggers/point
 - 33.3 second scan time
- Calorimeter DAQ started late
 - Fix in data by fitting the (two) peaks in Compton signal as a function of trigger number.
 - The mean of the two gives the anti-nodes of the scanner oscillation
 - Bin signal in laser beam position
- Result of preliminary analysis
 - σ_m=78.8±6.4 μ**m**

Fast scanning! (very preliminary)

- Data from Wednesday 16/02/05
- PETRA conditions
 - 7 GeV, 1 bunch
- Scan
 - 100 scan points
 - 1 triggers/point
 - 3.33 seconds for whole scan
- Clear signal observed
 - Thanks to the new window
- Analysis as before
- Result
 - σ_m=108.1± 2.3 μ**m**
 - Slightly larger beam size than slower scan

Summary and future plans

- First runs with fast scanning and new beam pipe window
 - Very promising first results
 - Not all the data has been analyzed
 - BPM measurements
 - Orbit bump scan
 - CCD measurements
 - More routine data analysis
- Results
 - Scan consistent with results of over one year ago
 - Faster scan indicates larger electron beam size (real effect or artifact of measurement?)
- More detailed analysis to come
 - Binning is rather inelegant method

- Future plans
 - Continue to automate the DAQ and analysis
 - Real diagnostic device opposed to developing experiment
 - Check travel range calibration
 - Upgrade laser
 - Q-switched or Mode locked
 - Vertical optical system
 - Measure both vertical and horizontal beam sizes
 - No need for beam bump
 - PETRA 3
 - Excellent diagnostic for light sources
 - Investigating sites within PETRA

Many thanks to BKR and PETRA shift crews and DESY mechanical engineers

2/18/2005