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Outline

  •  RF System Architecture

  •  Requirements for RF Control

  •  Sources of Perturbations

  •  RF Control Design Considerations

  •  Measured and Predicted Performance

  •  Conclusion
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RF System Architecture 
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RF Control Requirements

  •  Maintain Phase and Amplitude of the accelerating field within  
given tolerances to accelerate a charged particle beam

  •  Minimimize Power needed for control

  •  RF system must be reproducible, reliable, operable, and well 
understood.

  •  Other performance goals
  - build-in diagnostics for calibration of gradient and phase,       

cavity detuning, etc.
  - provide exception handling capabilities
  - meet performance goals over wide range of                            

operating parameters
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Requirements RF Control

 •  Derived from beam properties
  - energy spread
  - emittance
  - bunch length (bunch compressor)
  - arrival time

 •  Different accelerators have different requirements on field stability 
(approximate RMS requirements

  - 1% for amplitude and 1 deg. for phase (example: SNS)
  - 0.1% for amplitude and 0.1deg.for phase (linear collider) 
  - up to 0.01% for amplitude and 0.01 deg. for phase (XFEL)

Note: Distinguish between correlated and uncorrelated error
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Typical Parameters in a Pulsed RF System
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Pulsed Operation at High Gradients
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Sources of Perturbations

o Beam loading
  - Beam current fluctuations
  - Pulsed beam transients
  - Multipacting and field emission
  - Excitation of HOMs
  - Excitation of other passband modes
  - Wake fields

o Cavity drive signal
  - HV- Pulse flatness
  - HV PS ripple
  - Phase noise from master oscillator
  - Timing signal jitter
  - Mismatch in power distribution 

o Cavity dynamics
  - cavity filling
  - settling time of field

o Cavity resonance frequency change
  - thermal effects (power dependent)
  - Microphonics
  - Lorentz force detuning

o Other
   - Response of feedback system
   - Interlock trips 
   - Thermal drifts (electronics, power
     amplifiers, cables, power 
     transmission system) 
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Measurement of Cavity Q L and Detuning
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Lorentz Force Detuning
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Long Term Drift of Resonance Frequency
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RF Regulation TESLA Cavity (Simulation)
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Control Choices (1)

  •  Self-excited Loop (SEL) vs                                                
Generator Driven System (GDR)

  •  Vector-sum (VS) vs individual cavity control

  •  Analog vs Digital Control Design

  •  Amplitude and Phase (A&P) vs                                        
In-phase and Quadrature (I/Q) detector and controller
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Control Choices (2)
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Digital Control at the TTF
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Digital I/Q Detection

RF local oscillator (LO)
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 •  downconversion of cavity field
to IF frequency at 250 kHz

• complete phase and amplitude
information of the accelerat-
ing field is preserved.

 •  sample IF signal at 1MHz rate

 •  subsequent samples describe
real and imaginary component of
the cavity field.
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Adaptive Feedforward
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System Identification (1)
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Performance at TTF (1)
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Performance at TTF (2)

Operation with long beam pulses



ILC WS, KEK 04      Stefan Simrock DESY

C67 DSP board
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C67 DSP board



Digital Feedback Hardware

Gun and ACC1 ACC2, ACC3, ACC4 & ACC5
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Downconverter
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FPGA based RF Gun Controller
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Cavity Simulator
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Piezo-Actuator:

Umax=150V
l = 39 mm

∆l≈ 4 to 5µm at 2K
∆fmax, static≈ 500Hz

Active Compensation of Lorentz Force Detuning (1)

He-tank
+ cavity

tuning mechanism

piezo
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Active Compensation of Lorentz Force Detuning (2)
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Open Loop Errors 
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Conclusion

 •  Field regulation ranging from 1% to 10-4 amplitude and 1 deg. to 
0.01 deg. for phase  (in critical sections) will be required for future 
superconducting and normalconducting accelerators

 •  Noise sources for superconducting cavities are understood
  - Microphonics ( typ. 10 Hz)
  - Lorenz force detuning ( 1-3 Hz/(MV/m)^2)
  - Beam loading (few %)

 •  Rapid development in digital technology (DSP, FPGA, ADC, DAC) 
favors digital design for feedback/feedforward control.

 •  Fast Control with incident wave
  - feedforward for repetitive errors (beam,LFD, klystr.)
  - feedback (stochastic errors)
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 •  Limitation of feedback: Latency in Loop (limits loop gain) and 
Noise

 •  Limitation of feedforward: Measurement and Estimation of Pertur-
bations

 •  Resonance control with fast mechanical tuner promising
  - Lorentz force compensation successfully demonstrated
  - For microphonics control first result promising results

 •  Present achievements
  - 10-4 in amplitude and 0.03 deg. have been achieved at 

QL=1e7

 •  Outlook: Phase stability of 0.01 deg. appears feasible



ILC WS  2004, KEK Stefan Simrock DESY

Additional Requirements for X-FEL & ILC

  •  Installation in Tunnel
  - Packaging (airconditioned racks)
  - Availability (Redundancy)
  - Maintenance
  - Upgradability (20 years operation)

  •  Radiation environment
  - Total ionizing dose
  - Single Event Upset (SEU)

  •  Large Scale Installation
  - Operability (Automated operation with FSM)
  - Exception handling

  •  X-FEL specific: Field stability and higher rep. rate
  •  ILC specific: High gradient (35MV/m) 



RFC-1925 - The Fundamental Truths
April 1, 1996

(1) It Has To Work.

(2) No matter how hard you push and no matter what the priority, you can't increase the speed
of light.

a. (corollary). No matter how hard you try, you can't make a baby in much less than 9
months. Trying to speed this up *might* make it slower, but it won't make it happen
any quicker.

(3) With sufficient thrust, pigs fly just fine. However, this is not necessarily a good idea. It is
hard to be sure where they are going to land, and it could be dangerous sitting under them
as they fly overhead.

(4) Some things in life can never be fully appreciated nor understood unless experienced
firsthand. Some things in networking ACCELERATORS can never be fully understood by
someone who neither builds commercial networking ACCELERATOR equipment nor runs
an operational network ACCELERATOR.

(5) It is always possible to agglutinate multiple separate problems into a single complex
interdependent solution. In most cases this is a bad idea.



RFC-1925 - The Fundamental Truths – cont.

(6) It is easier to move a problem around (for example, by moving the problem to a different
part of the overall networking ACCELERATOR CONTROLS architecture) than it is to solve
it.

a. (corollary). It is always possible to add another level of indirection.

(7) It is always something
a. (corollary). Good, Fast, Cheap: Pick any two (you can't have all three).

(8) It is more complicated than you think.

(9) For all resources, whatever it is, you need more.
a. (corollary) Every networking ACCELERATOR problem always takes longer to solve

than it seems like it should.

(10)   One size never fits all.

(11)   Every old idea will be proposed again with a different name and a different
presentation, regardless of whether it works.

a. (corollary). See rule 6a.

(12)   In protocol LLRF design, perfection has been reached not when there is nothing left to
add, but when there is nothing left to take away.




