Asian Plan for ILC : Overview

Kaoru YOKOYA

DESY visit, Mar.7.2005

- Our Basic Strategy
- Plan for the Next Few Years

Asian Organization for ILC Research

Working groups (same structure as in the ILCWS)

WG1	Overall design	K. Kubo
WG2	RF	H. Hayano
WG3	Injectors	M. Kuriki
WG4	Beam Delivery System	T. Sanuki
WG5	Cavities	K. Saito
?	Facility	A. Enomoto
?	Site	R. Sugahara

Japan LC Office

F. Takasaki (chair), K. Yokoya, H. Hayano, N. Toge, S. Yamashita

Third ACFA Statement on Linear Collider (abridged)

9th ACFA meeting at Kolkata, India, Nov.2004

- ACFA welcomes the truly international nature of the decision on technology for the ILC. This sets the stage for international collaboration in the design efforts for the ILC.
- ACFA reconfirms the importance of hosting ILC in Asia, which will make high energy physics and accelerator science truly global.
- ACFA urges the Japanese Government to fully support the efforts of KEK and Japanese scientists to host the ILC in Japan.
- ACFA urges KEK to establish the Asian Regional Center for R&D in GDI and encourages other Asian countries to actively participate in GDI.
- With ILC entering this important phase, ACFA urges Governments of Asian countries to support participation of their scientists in GDI.

Research in Asia

- Active participation from China and Korea
- Existing facilities and technology base (workshops in the labs, SC technology for nuclear fusion, etc.)
- Working Groups formed
- Many from China/Korea are visiting/going to visit KEK
- Possible production of components

	IHEP contact person	PAL Task Force Team
		(Head) Won NAMKUNG
WG1	GAO Jie	Jin-hyuk CHOI, Moo-yun CHO
WG2	CHI Yun-long	Jong-seok OH, Won-ha HWANG
WG3	PEI Guo-xi	Sung-ju PARK, Eun-san KIM
WG4	Wang Jiu-qing	Jung-yun HUANG, Hee-seock LEE
WG5	ZHAO Sheng-chu	Sang-ho KIM, Young-uk SOHN

Critical Reaserch Areas

\bullet Establishment of the technology for accelerating gradient 35MV/m

- Technologies for cost reduction
- Technologies for mass production

• Pursuit of possible higher accelerating gradient

- Larger operational margin of gradient
- Wider possibility of site selection

Beam technology development using KEK-ATF

- Unique storage ring to reach ILC emittance
- Make full use of ATF capabilities

'Higher Gradient'

- 45km site needed for 1TeV with 35MV/m
- There are a few site candidates in Japan ≥45km, but higher gradient desirable for flexible choice
- 40km if 40MV/m
- Use 45MV/m as target operation gradient for document consistency.
 Actual value may be different.
- This value includes operation margin

Development of 45MV/m ~(\Rightarrow Saito)

- Single-cell test soon
- 9-cell cavity design done. Fabrication starting.
- Individual vertical test of four 9-cell cavities by Sep.2005
 - $\circ\,$ Just in time for CDR completion
 - In existing facilities (AR east)
 - If expected performance not obtained, \Rightarrow change to slower plan for ILC 2nd stage
- Cryomodule test by end of 2006 \Rightarrow STF Phase 1
- Industrial design by TDR

STF (\Rightarrow Hayano)

Superconducting RF Test Facility

- Linac R&D building for JPARC
- Emptied by summer 2005
- 93m tunnel underground
- Reuse existing facilities
 - Refregerator from AR east
 - Power supply and modulator

Purpose of STF

- Establish industrial design of Linac unit (35MV/m and 45MV/m)
- Promote Asian/Japanese industrial level for ILC component production
- Form Asian base for international collaboration
- Enlist/educate new comers

Applications of superconducting technology to other area such as **FEL** and **ERL** are also in the scope after ILC R&D.

Plan of Superconducting Cavity Test Facility (STF)

V1.0 Hitoshi Hayano, 11/07/2004

STF Phase 1 (2005-2006)

- Crymodule for 4 45MV/m cavities
- Crymodule for 4 35MV/m cavities
- RF source and cryogenic system (mostly recycled)
- Electron beam and its diagnostics system
- Synthetic test of 35MV/m & 45MV/m cryomodules with beam

Other items with STF Phase 1 (\Rightarrow Saito)

• Electro-polishing Facility

- Phase 1 cavities can be processed in present (aged) facility
- $\circ\,$ Need to refresh the facility for future
- $\circ\,$ Needed whatever actually goes with Phase 2
- Can electro-polish cavities to be used overseas
- Cost reduction of cavity fabrication
 - Nb/Cu-clad, seamless cavity
 - Potentially bring about significant cost reduction
 - Development can be done in parallel with cryomodule test

STF Phase 2 (2007-2009)

- 3 Cryomodules each containing 12 cavities (35 or 45MV/m)
- Reinforcement of RF and cryogenic systems
- Synthetic test with a beam

Many uncertaintyies for Phase 2

- Detailed plan in the 2nd half of 2005 (Some components must be prepared in JFY2006)
- GDI will be functional by that time
- Collaboration/competition with TTF2/SMTF-ILC
- A few full-spec RF units needed for TDR somewhere in the world
- STF Phase 2 is desired for Asian industrial level

International Collaboration on Linac

- Cavities
 - $\circ\,$ Japan is in a high level in the world
 - * Has been developing high gradient technology
 - \star Has contributed to the world
 - International collaboration in individual items
 - * Design, field calc.(DESY, SLAC)
 - * Electro-polishing work and technology transfer (JLab, SNS)
 - \star Planning to provide with EP cavities for SMTF ...
- Other than cavities
 - Introduction of TESLA technologies and possible partial improvements in Japan
 - \circ Wider range of collaboration for STF Phase2

ATF (\Rightarrow Kuriki)

- Beam dynamics study
 - Fast ion instability
 - Dynamic aperture with wiggler, etc
- Development of diagnostics devices (Laser wire, cavity BPM etc.)
- Improvements of the extracted beam
 - Emittance of the present extracted beam still large compared with ring emittance / ILC emittance
 - Stabilization of the extracted beam
 (Also needed for experiments using extraccted beam)
- Development and test of **fast extraction kicker**
- Owe very much on internaltional collaboration, especially Japan-US collaboration

Extension of ATF Extraction Line : ATF2

- Stable collision of 5nm beams is essential in ILC
- SLAC-FFTB realized 60nm beam by ~ 1997
- Extension of ATF extraction line can produce \sim 35nm beam

This beam size itself is not a big progress but, with **nanoBPM technology** being developed at ATF, a stabilization test down to nanometer is possible

Time Scale

- The first step should be in time for TDR
- But very useful for ILC design even after TDR
 - Final Focus Design work will continue after ILC ground breaking (with constraints such as total length and crossing angle)
- Can experience tuning work (Minimize ILC commissioning time)

Purposes of ATF2

(A) Small beam size

(A1) Obtain $\sigma_y \sim$ 35nm

(Note: The principles of chromaticity correction are different between FFTB and ILC)

(A2) Maintain for long time

(B) Stabilization of beam center

- (B1) Down to $\leq 2nm$ by nanoBPM (cavity BPM)
- (B2) Bunch-to-bunch feedback of ILC-type beam (~300nm interval) when fast kicker extraction is ready

But technological ones are not all... ATF2 should be

- World center of beam-handling technology
- Recruit/education center for new comers

as the present ATF is.

International Collaboration on ATF2

- Design study going on by international collaboration
 - \circ ILC WG4, MDI group, ATF
 - \circ Mini-workshops: Dec.11 at KEK, Jan.5 at SLAC
 - $\circ\,$ Submit proposal to PAC in May
 - Complete design by BDIR workshop in June
- Budget
 - \circ Total \sim 3.0 Oku Yen (floor, beamline, diagnostics)
 - $\circ\,$ Desirable to share the expenses among Asia, North America, Europe (except for infrastructure ${\sim}0.6$ Oku Yen)
 - $\circ\,$ Miniature of ILC (1/1000)
 - $\circ\,$ Basic agreements with SLAC
 - Have to start discussion with Europe
- Present plan
 - Floor construction in summer 2006 (start installation ~Sep.2006)
 - $\circ\,$ Start operation in Jan.2007

long-term Plan of KEK ILC-study GDI CDR TDR 2004 2006 2008 2005 2007 1112 1 8 12 1 4 8 12 1 4 8 12 1 8 4 4 snowmass **EXT kicker** ATF beam ATF beam ATF beam ATF beam ATF beam replace ATF2 connection **ILC** beam Fast kicker **Kicker experiment** extract study study ATF2 ATF2 ATF2 proposal **Component Fabrication** Install extraction extraction floor 37nm size

ATF, ATF2

