High Power Couplers for TESLA SL Cavities

Wolf-Dietrich Möller DESY

- 1. TESLA Coupler Specification
- 2. Design Criteria
- 3. TTF 3 Coupler
- 4. Couplers in use at TTF-FEL
- 5. Tests at 35 MV/m
- 6. Industrial Study of the TTF 3 Coupler for X-FEL
- 7. Other Developments

1. Specification of the TESLA High Power Coupler

	TTF	TESLA 9-cell / upgrade	TESLA superstructure / upgrade
beam power incl. control margin	250 kW	250 kW / 500 kW	555 kW / 1110 kW
repetition rate	10 Hz	5 Hz	5 Hz
coupling	adjustable (10 ⁶ - 10 ⁷)	fix (3*10 ⁶)	fix (2.5*10 ⁶)
cavity position during cool down	flexible (15 mm longitudinal)	fix point (1.5 mm longitudinal)	fix point (1.5 mm longitudinal)

General Parameters

frequency	1.3 GHz	
onaration	pulsed: 500 µsec risetime,	
operation	800 µsec flat top with beam	
power for High Power	1 MW at reduced pulse length	
Processing in situ	(500 µsec and repetition rate 1 Hz)	
2 K heat load	0.06 W	
4 K heat load	0.5 W	
70 K heat load	6 W	
diagnostic	sufficient for safe operation and monitoring	

2. Design criteria for the TESLA Coupler

coax is easy for:

- variable coupling
- fabrication
- assembly
- two windows for:

cold coax:

warm coax:

bias on inner conductor: flexibility: - l ceramics: - 2

copper plating:

- clean assembly of the cavity
- save operation
- at 70 Ohm, 40 mm diameter
- at 50 Ohm, 60 mm diameter
 - suppress multipacting
- bellows in the warm and cold coax
- Al₂O₃ with TiN coating
- 10/30 μm outer/inner coax
- high thermal conductivity (RRR \ge 30)
- high purity, Hydrogen free

Multipacting as a Design Criteria

in order to avoid multipacting during conditioning and operating one has to:

- choose the right coaxial line diameter (MP level moves up with the 4th power)
- the right impedance (MP level moves up linear)
- lower the secondary electron emission coefficient on the surfaces (especially the ceramic)
- add a bias voltage to the inner conductor to suppress multipacting

3. TESLA Coupler TTF 3

4. Power Couplers in use at TTF-FEL

C	oupler type	FNAL	TTF II	TTF III
-	window	conical	cyl.	cyl.
colc	coax diameter, mr	40	40	40
	Impedance, Ohm	50	70	70
c	window	flat, WG	flat, WG	cyl.
/arn part	coax diameter, mr	60	60	60
s –	Impedance, Ohm	50	50	50
coupling		adjustable	adjustable	adjustable
bias TiN coating		no	yes	yes
		FermiLab FermiLab		DESY
σ	2Hz / 500µs	1MW	2MW	1MW
test tan TW	2Hz / 1.3ms	1MW	1.8MW	1MW
° N	cold test done	yes	no	no
ist	2Hz / <500µs	1MW	1MW	1MW (HPP)
r. te SW	10Hz / 1.3ms	33MV/m	35MV/m	35MV/m (600 kW)
ho	cold test done	yes	yes	yes
fal	oricated total	16	20	62
tested		16	20	24
used	in TTF modules	12	19	11
a	assembled to Mo		Mod.1*, 3*, 4	Mod.5 (6, 7, 8) SS
	operated	1997-2004	1998-2004	2001-2004
	operated	100000 hr*coupler	130000 hr*coupler	35000 hr*coupler

5. Tests at 35 MV/m

- Long run test of EP cavities in the horizontal cryostat
 - o This test includes all auxiliaries like power coupler, HOM coupler, tuner, piezo...
 - o Gradient: 35 MV/m
 - o Max forward power: 600 kW
 - o RF on time 2400 hs
 - o No breakdowns in the coupler
- High gradient test with beam (in module ACC1)
 o Gradient: 35 MV/m
 - o Gradient calibration with beam

6. Industrial Study of the TTF 3 Coupler for X-FEL (Collaboration between LAL & DESY)

Publication of the call for candidacy was on February 15th 2005, study will finish February 2007 with delivery of two prototypes. Three companies will be involved.

Goals:

- minimize risks related to project:
 - all technical issues will be solved
 - development plan ready
- minimize financial risks:
 - precise estimation of cost in series
 - assurance that the chosen contractors will succeed
- gain time on manufacturing contract: all studies are done

Principle of

"Definition contract for industrialisation studies"

- Essentially intellectual work:
 - Define all manufacturing processes
 - Risk analysis (process, logistics)
 - Determine cost in series and justify
- Produce validation models and 2 prototypes

Particularities

٠

- 3 contracts will be awarded on the same subject
- these contracts will run simultaneously during 21 months
- evaluation of performance will be continuous (formal reviews are key points)
- 2 teams will be selected after final evaluation
- contracts for manufacturing 2 series of 500 XFEL couplers will be awarded without new call for tenders
- the 2 contracts may be awarded to a single company

Status of additional work

 Study of geometrical tolerances (RF studies) 	
 Thermal studies (analytical + FEA) 	
 RF studies of capacitor 	
 Control electronics 	
 Conditionning studies 	
· EDMS	
 TiN coating technology 	
 Interfaces definition with: 	
WP3, WP8, WP9, WP19, WP28, WP29, WP33, WP34, WP36	

Completed

In progress

Not started

Time schedule (now shifted by 2 month)

	Nom de la tâche	Début	Fin	2005	2006	2007
4				MAMJJASONDJFMAMJJASOND	JFMAMJJASOND	
1	Industrialisation phase	03/05/04	30/07/07			
2	Drawings preparation	27/08/04	10/12/04			
3	Drawings update	13/12/04	08/09/05			
4	Thermal studies	01/06/04	08/09/05			
5	HF analysis (tolerances studies)	01/06/04	06/12/04			
6	Studies of motorized tuning and control	01/10/04	30/06/05			
7	Coupler conditioning studies	03/05/04	19/12/05		1	
8	TiN coating technology development ?	03/01/05	21/12/05		H	
9	Call for tenders preparation	01/06/04	07/01/05			
10	Notification for tenders	08/12/04	08/12/04	<mark>♦</mark> 08/12		
11	Time for receipt of candidacy	08/12/04	17/01/05			
12	Selection of candidates	18/01/05	07/02/05	l l l l l l l l l l l l l l l l l l l		
13	Tender documents are sent	07/02/05	07/02/05	07/02		
14	Time for receipt of tenders	08/02/05	21/03/05	· · · · · · · · · · · · · · · · · · ·		
15	Tenders analysis	22/03/05	19/05/05			
16	Award of definition contracts (2 or 3)	30/05/05	30/05/05	↓ 30/05		
17	Technology transfer to industry	02/01/06	02/01/06		\$ 02/01	
18	Progress of 3 definition contracts	01/06/05	27/02/07			
19	System Design Review	01/09/05	01/09/05	🍾 01/09		
20	Preliminary Design Review	01/02/06	01/02/06		♦ 01/02	
21	Critical Design Review	01/08/06	01/08/06		♦ 01/08	
22	Delivery of prototypes	28/02/07	28/02/07			28/02
23	Analysis of results	28/02/07	30/07/07			*
24	Award of manufacturing contract(s)	30/07/07	30/07/07	\triangleright		30/07
25	1000 couplers manufacturing phase	31/07/07	i 4702/11		S. Prat, J	

7. Other Developments

- Coupler design with 80 mm coax diameter (foreseen for the 4 x 7 cell superstructure) was designed at DESY, build and tested at LAL, Orsay
- DESY RF design for a 60 mm coax diameter is finished for the 2 x 9 cell super structure
- LAL design of 60 mm coax diameter and disc windows is under construction
- In collaboration with AMAC a 80 mm coax coupler with disc windows is designed, fabricated and tested
- Simplification of the diagnostic
- CW tests at Elbe Rossendorf and Bessy Berlin up to 4.5 kW
- New collaboration with KEK well on the way

TTF 4 coupler

- 80 mm coax
- Foreseen for the 4 x 7 cell superstructure
- Two prototypes build & tested at LAL

LAL Design

- Coax 60 mm
- Disc windows
- Under construction

AMAC - DESY Collaboration

- 80 mm coax
- Two prototypes fabricated and under test

Conclusion

- 62 TTF 3 couplers are fabricated
- 24 are tested
- 11 TTF 3 couplers are under operation in TTF
- Several tests at Eacc \geq 35 MV/m done
- One test at 35 MV/m over 2400 hrs
 - No breakdowns in the coupler
- Industrial study for the X-FEL is started
- Coupler developments for higher power (bigger coax diameter) is under way