ILC European Regional Meeting and ILC-BDIR

Royal Holloway, University of London, 20-23 June 2005

Cryomodule Issues

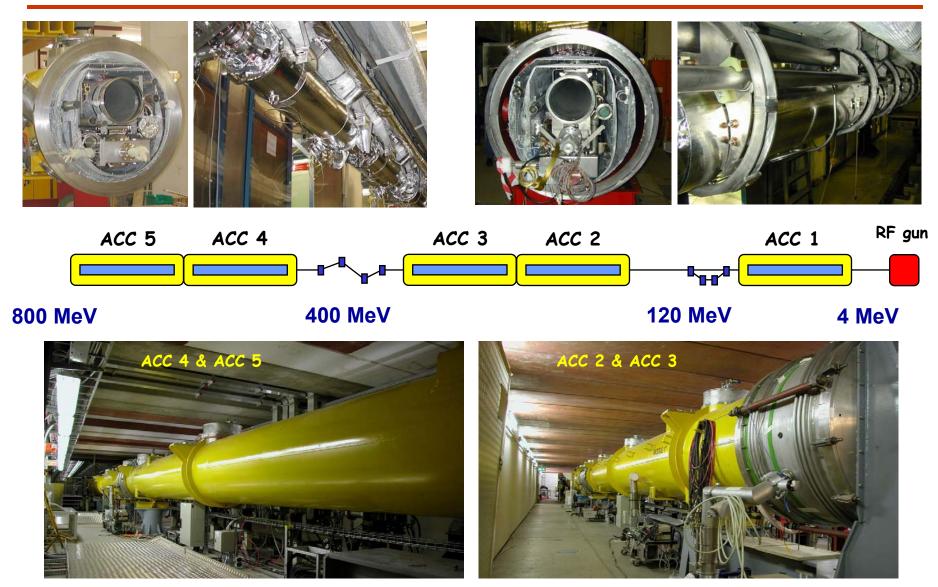
Carlo Pagani

INFN Milano and DESY

On leave from University of Milano

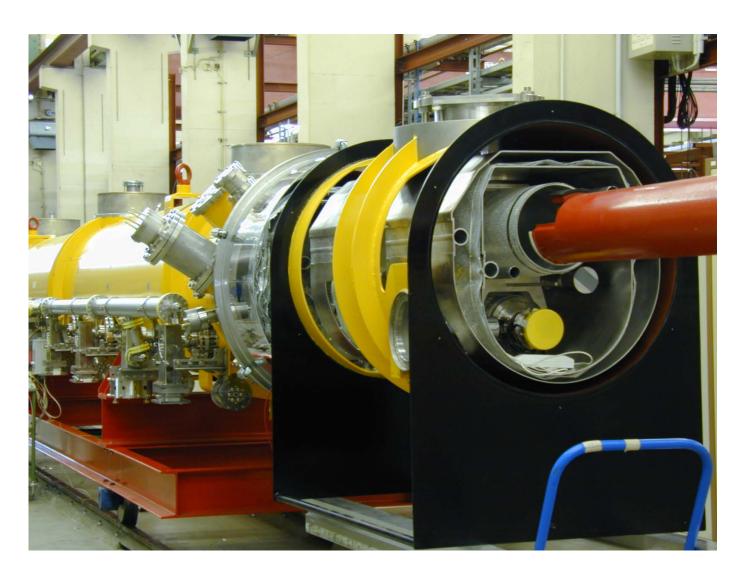
TESLA Cryomodule Design Rationales

- High Performance Cryomodule was central for the TESLA Mission
 - More then one order of magnitude was to be gained in term of capital and operational cost
- High filling factor: to maximize real estate gradient
 - Long sub-units with many cavities (and quad): cryomodules
 - Sub-units connected in longer strings
 - Cooling and return pipes integrated into a unique cryomodule
- Low cost per meter: to be compatible with a long TeV Collider
 - Cryomodule used also for feeding and return pipes
 - Minimize the number of cold to warm connections for static losses
 - Minimize the use of special components and materials
 - Modular design using the simplest possible solution
- Easy to be alligned and stable: to fullfil beam requirements

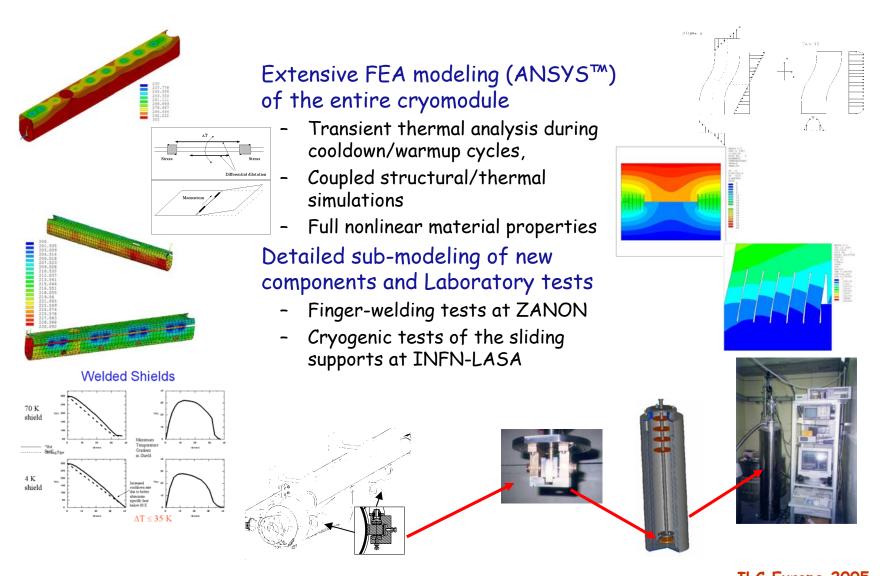

Performing Cryomodules

Three cryomodule generations to:

 improve simplicity and performances minimize costs "Finger Welded" Shields Reliable Alignment Strategy Sliding Fixtures @ 2 K

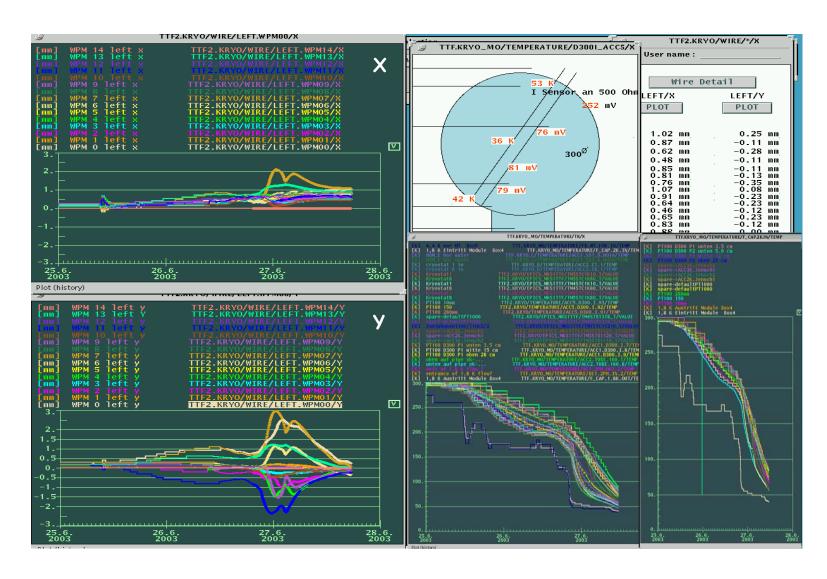

Required plug power for static losses < 5 kW/(12 m module)

Cryoodules installed in TTF II

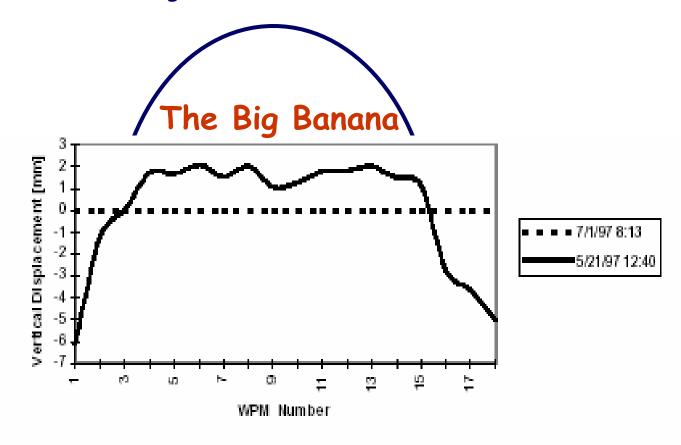


ILC Europe 2005 21 June 2005

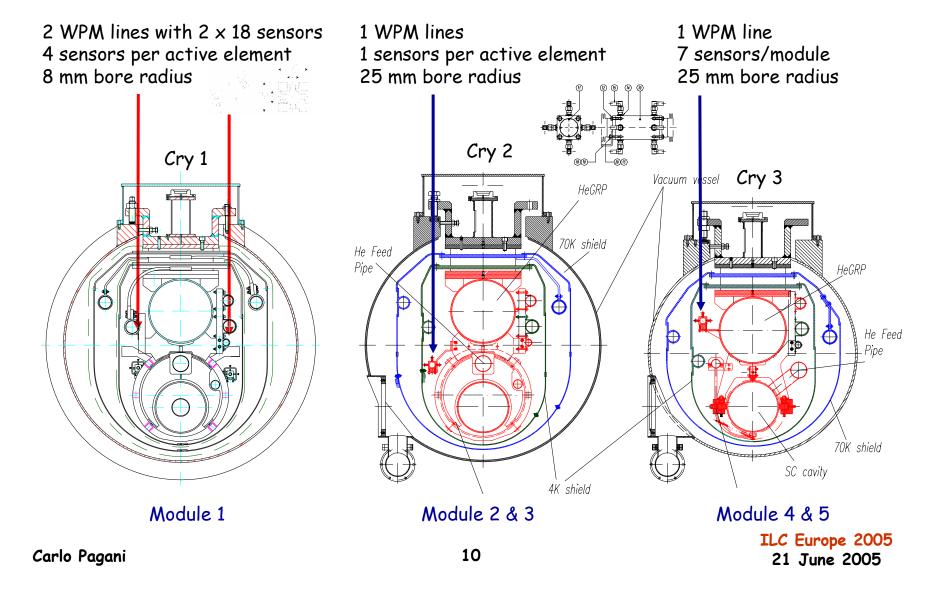
Cry2 to Cry3: Diameter Comparison


From Prototype to Cry 3

TTF Module Installation


	Туре	Installation date	Cold time [months]
CryoCap		Oct 96	50
M1	1	Mar 97	5
M1 rep.	2	Jan 98	12
M2	2	Sep 98	44
M3	2	Jun 99	35
M1*	2	Jun 02	27
MSS	2		8
M3* M4	2	Apr 03	16 16
M 5	3	·	16
M2*	2	Feb 04	13

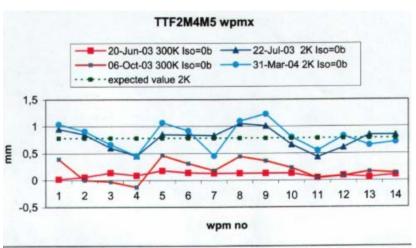
Safe Cooldown of ACC4 and ACC5


Large Bending in First Cooldown

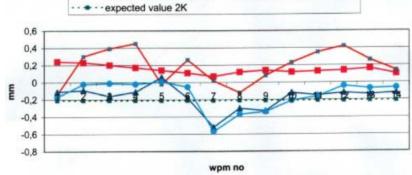
New Cooldown procedure suggested by the WPM's measurements during the first "fast" cooldown

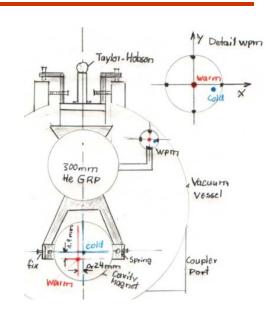
Wire Position Monitors

On line monitoring of cold mass movements during cool-down, warm-up and operation



ACC4 & ACC5 Met Specs





TTF2M4M5 wpmy

20-Jun-03 300K, Iso=0b
22-Jul-03 2K, Iso=0b
31-Mar-04 2K, Iso=0b

Table 1: Result Summary.								
TDR Specifications (rms)								
Cavities x/y ± 0.5 mm								
Quadrupoles x/y ± 0.3 mm								
WPM results (peak)								
Cavities	х	+ 0.35/- 0.27 mm						
	у	+ 0.18/- 0.35 mm						
Quadrupoles	x	+ 0.2/- 0.1 mm						
	у	+ 0.35/- 0.1 mm						

- Still some work at the module interconnection
- Cavity axis to be properly defined

Installation and Cold test Overview

Module	Type	Assembly		Installatio	n and Test	Therm. Cycles		
		Year	Days	in TTF-Lir	nac	cold/warm		
Capture	Spec.	Saclay 1	996	Oct-96	96>Sep-03	c/w 13		
M1	t	1997	>>	Mar-97	97>Sep-97	c/w 2		
M1 rep.	1	1997/98	>>	Jan-98	98>Mar-99	c/w 3		
M2	11	1998	>>	Sep-98	98>May-02	c/w 3		
МЗ	11	1999	35+15	Jun-99	99>May-02	c/w 1		
M1*	n	2000	24	Jun-02	02>	c/w 3+1		
M4	III	2001	18+10	Apr-03	03>	c/w 1+1		
M5	m	2002	30	Apr-03	03>	c/w 1+1		
MSS	Spec.	2002	36	Jun-02	02>Sep-03	c/w 3		
M3*	11	2003	18+6	Apr-03	03>	c/w 1+1		
M2*	11	2004	20	Feb-04	04>	c/w 1		
(M6 EP)	m	(end 200	(42)	Modules	under test in TTI	F2-Linac		

Status:15-Sep-04 RLange-MKS-

TTF Cryomodule Performances

							Status:15-	Sep-04 R.I	Lange -MK	S1-	
Designed	l, estir	nated a	and m	ie	asure	d stati	c Cryo	-Loads	TTF-	Module	s in TTF-Linac
Module	40/80 K	[W]	1388		4.3K [W	/]		2 K [W]		THE STATE OF THE S	Notes
Name/Type	Design	Estim.	Meas.		Design	Estim.	Meas.	Design	Estim.	Meas.	
Capture			46,8				3,9			5,5	Special
Module 1 I	115.0	76.8	90.0	*	21.0	13,9	23.0 *	4,2	2,8	6,0 *	Open holes in isolation
Modul1 rep. I	115.0	76.8	81,5		21.0	13,9	15,9	4,2	2,8	5,0	2 end-caps
Modul 2 II	115.0	76.8	77,9		21.0	13,9	13.0	4,2	2,8	4,0	2 end-caps
Module 3 II	115.0	76.8	72.0	**	21.0	13,9	48.0 *	*4,2	2,8	5,0	Iso-vac 1E-04 mb, 2e-cap
Module 1* II	115.0	76.8	73.0		21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module 4 III	115.0	76.8	74	4	21.0	13,9	13.5	4,2	2,8	<3.5	1 end-cap
Module 5 III	115.0	76.8	74		21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module SS	115.0	~76.8	72.0		~21.0	~13.9	12.0	~4.2	>2,8	4,5	Special, 2 end-caps
Module 3* II	115.0	76.8	75		21.0	13,9	14	4,2	2,8	<3.5	1 end-cap
Module 2* II	115.0	76.8	74		21.0	13,9	14,5	4,2	2,8	<4,5	2 end-caps
Module 6 EP	Type III,	EP-Caviti	es Goal	:S	olution c	lose to X	FEL Modul	les		THE REAL PROPERTY.	(Assembly End-04??)
	Design	and estim	ated valu	ue	s by Tom	rmilab-	Module	s under Te	st in TTF2-Linac		

Cold Leaks Experience at TTF

Status:15-Sep-04 R. I	ange -MKS								
oldino. To ocp of the	-unge unico								
Module	M1	M2	M3	MSS	M1*	M3*	1/14	M5.	M2*
Number of leaks Vac	1	6	7	0	1	1	0	0	
Number of cool/warm	3	3	1	3	3+1	1+1	1+1	1+1	1
He>insulation	0	0	1 C5 tank weld 1 C8 bellow w	0	0	0	0	0	0
Insulation>coupler	0	0	0	0	0	0	0	0	?
Insulation>beam pipe	Cav-flange	4 BPM feed-th	1 BPM feed-th	0	1	1(more?)	0	0	?
		The state of the s	2 C2/C8 e-pick 1 C7 coup-flan						
Coupler>beam pipe	0	1 C1 ceram wi		0	0	0	0	0	?
He>beam pipe	0	0		0	0	0	0	0	0

TESLA Cryomodule Concept Peculiarities

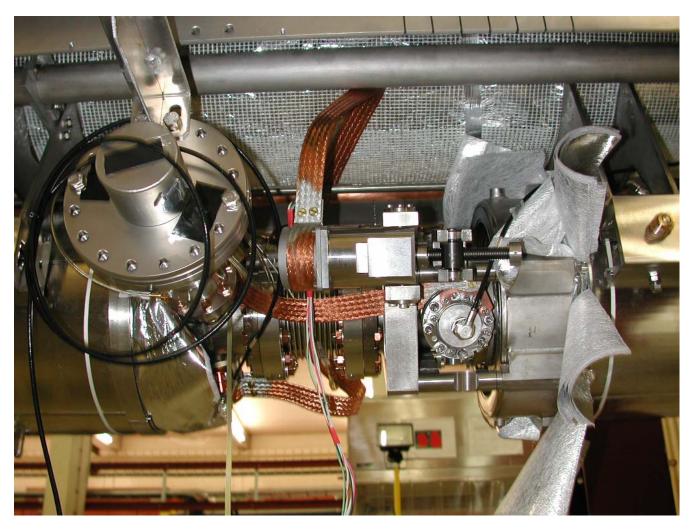
Positive

- Very low static losses
- Very good filling factor: Best real estate gradient
- Low cost per meter in term both of fabrication and assembly

Project Dependent

- Long cavity strings, few warm to cold transitions
- Large gas return pipe inside the cryomodule
- Cavities and Quads position settable at \pm 300 μ m (rms)
- Reliability and redundancy for longer MTTR (mean time to repair)
- Lateral access and cold window natural for the coupler

Negative?


- Longer MTTR in case of non scheduled repair
- Moderate (± 1 mm) coupler flexibility required

String inside the Clean Room


String in the assembly area

Cavity interconnection detail

String hanged to he HeGRP

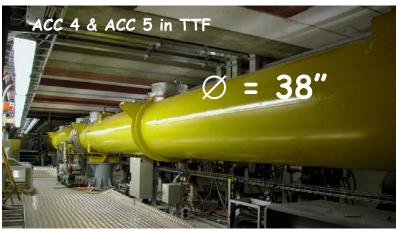
String on the cantilevers

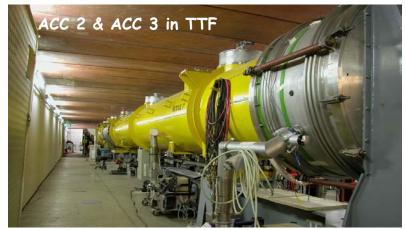
Close internal shield MLI

External shield in place

Welding "fingers"

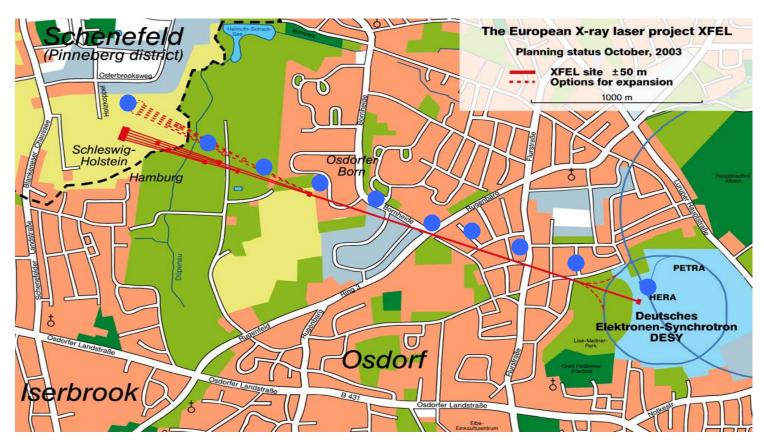
Sliding the Vacuum Vessel




Complete module moved for storage

LCH and TESLA Cryomodule Comparison

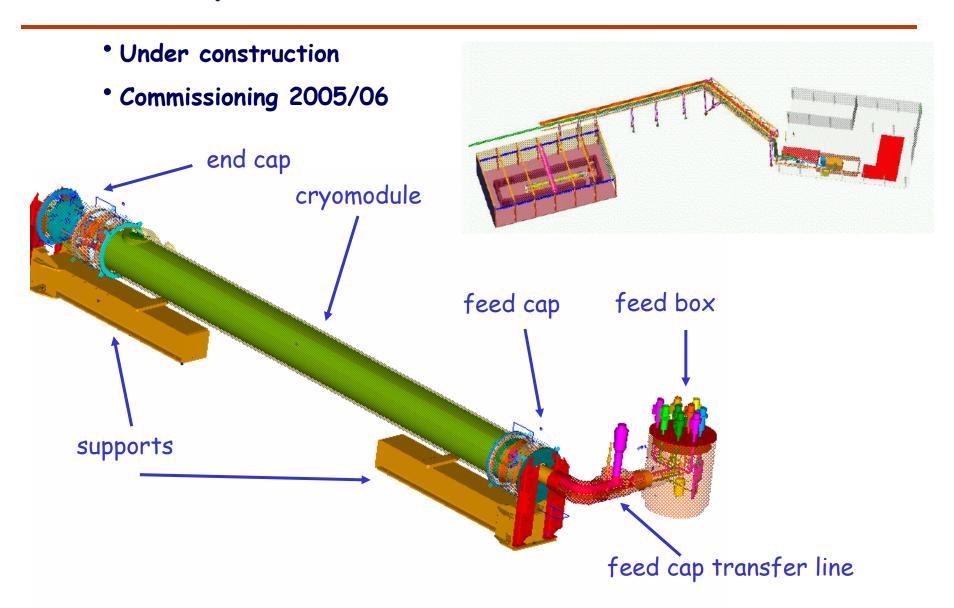
A number of design details from the LHC/CERN experience should be considered



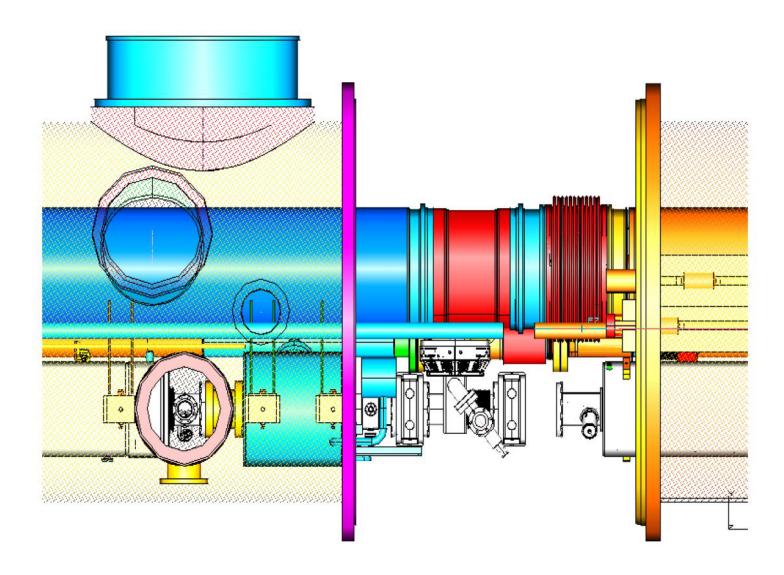
The X-FEL

- 50%-60% funded by the German Government European consensus established
- Great opportunity for all TESLA Technology based Projects
 - Machine reliability according to SRL standards
 - Industrial mass production of cavities (~ 1000) and modules (> 120)

Cry 3 Design and X-FEL Requirements


Module performance	Module 4	Module 5	Meet XFEL Requirements	Comment
RF gradient	>23 MV/m	>25 MV/m	yes	
Cryo losses (2K /4K/ 70K)	<3.5 / 13.5 / 74	<3 / 13.5 / 74	yes	
Leaks	no	no	yes	2 cooldown / 1 warmup
Alignment of cavities inside	better +/- 0.5 mm	better +/- 0.5 mm	yes	improvements possible
Component performance				
Coupler	TTF II	TTF III	yes	Options: reduce cost e.g. increase copper layer thickness, simplify assembly
HOM coupler	DESY/Saclay	DESY	yes	Option: Higher duty cycle
Pickups	diverse	diverse	yes	thermal cycling necessary as quality control
Tuner	Saclay	Saclay	yes	Option: Piezo, more compact and stiffer mechanical design
Magnet	DESY	DESY	yes	Option: Smaller size and 2 K operation
ВРМ	Saclay/ DESY	Saclay/ DESY	no	Prototype in M2* at ACC1 O.K.
HOM absorber	stainless steel beampipe inside the quad	stainless steel beampipe inside the quad	no	Absorber samples installed between ACC2 and ACC3, New design underway, needs test
Magnetic shielding	Cryoperm + demagnetization	Cryoperm + demagnetization	yes	

Rolf Lange/ Lutz Lilje DESY



1st Module Meeting 17.06.2004

Cryomodule Test Stand @ DESY



Cry3 adaptation in progress

The Ciemat 2K Quadrupole

Industrial Study

Technical Specification XFEL-Cryomodule Design&Assembly **Industrial Studies** DESY EV 010-04 Version 2.4 Bernd Petersen DESY -MKS- (technical coordinator) phone: +49 40 8998 3596

- Technology transfer from Research to Industry
- Review with industry of the cryomodule design and assembly to focus:
 - Cost drivers
 - Critical steps of the assembly procedure
- Suggestion based on industrial experience in term of:
 - Similar productions
 - Labor organization
 - Quality control

Proven design, just few details to clean up

Most are useful, but not necessary, for X-FEL Industrialization foreseen for X-FEL good for ILC too A few examples

- Quad Fixture (sliding as for cavities) planned for X-FEL
- ► Flange connections: Sealing and Fixing
- Various braids for heat sinking (all coupler sinking stile)
- ► Cables, Cabling, Connectors and Feed-through
- Composite post diameter (and fixture for transportation)
- ► Warm fixtures of cold mass on Vacuum Vessel (fixed and sliding)
- ► LMI Blankets for the 50-70 K shield (LHC Style)
- ► Module interconnection: Vacuum Vessel sealing, pipe welds, etc.
- Coupler provisional fixtures and assembly

Design changes important for ILC

- ► Move quadrupole to the center
 - Quad/BPM Fiducialization
 - High pressure rinsing and clean room assembly issues
 - Movers for beam based alignment? Why not if really beneficial
- ► Short cavity design
 - Cutoff tubes length by e.m. not ancillaries (coaxial tuner)
- ► Cavity inter-connection: Flanges and bellows (coating?)
 - Fast locking system for space and reliability (CARE activity)
 - Bellow waves according to demonstrated tolerances
- ► Coaxial Tuner with integrated piezo-actuators
 - Parametric "Blade Tuner" successfully operated on superstructures
 - Piezo fast tuner not integrated yet
- ► Longer module design: 10-12 cavities
 - Length to be based on the overall machine cost optimization

Concluding Remarks

- TTF Operation Experience shows that Cry 3 Modules are close to the optimum in term of performances
- Improvements where conceived at the time of the TESLA TDR, but never developed because of sake of funding and personnel
- X-FEL will use the present design with minimum modifications
- ILC should use the TESLA TDR cryomodule design, very close to the so called Cry 3, as the basis for further improvements
- An international concentrated effort in this direction would have the advantage to have most of the modifications implemented in time for the X-FEL, with the strong support and expertise of DESY and of the European TESLA Collaboration members.
- Synergy with the X-FEL would be much stronger and the benefit for the ILC really great