Intra-train Beam Feedback Hardware Development

Philip Burrows

Queen Mary, University of London

Philip Burrows

International Fast FB Collaboration

• FONT:

Queen Mary: Philip Burrows, Glen White, Glenn Christian, Hamid Dabiri Khah, Tony Hartin, Stephen Molloy, Christine Clarke, Christina Swinson Daresbury Lab: Alexander Kalinin, Roy Barlow, Mike Dufau Oxford: Colin Perry, Gerald Myatt SLAC: Joe Frisch, Tom Markiewicz, Marc Ross, Chris Adolphsen, Keith Jobe, Doug McCormick, Janice Nelson, Tonee Smith, Steve Smith, Andrei Seryi, Mark Woodley, Linda Hendrickson.

• FEATHER:

KEK: Toshiaki Tauchi, Hitoshi Hayano Tokyo Met. University: Takayuki Sumiyoshi, Hiroaki Fujimoto

• Simulations: Nick Walker (DESY), Daniel Schulte (CERN)

Philip Burrows

Intra-train Beam-based Feedback

- Intra-train beam feedback is last line of defence against relative beam misalignment
- Key components: Beam position monitor (BPM) Signal processor Fast driver amplifier E.M. kicker Fast FB circuit

TESLA TDR: principal IR

beam-misalignment correction

Philip Burrows

Zero-degree crossing angle (TESLA TDR)

Philip Burrows

'Large' crossing angle (NLC)

Philip Burrows

Feedback Hardware Program Goals

Aim: prototype components required for ILC intra-train beam feedback system(s):

BPMs Signal processor Feedback circuit Amplifier Kicker

and demonstrate system performance with real beam

FONT1 Prototype Feedback System

NLCTA: 65 MeV beam, 170ns train, 87ps bunch spacing

FONT1 (2001-2):

button BPM (X-band): difference/sum method charge normalisation: 1/sum using earlier pulse and AWG analogue signal processor high power 3-stage tube amplifier 30cm stripline kicker

First demonstration of closed-loop FB: total latency 67ns (32ns TOF, 35ns electronics) beam moved by c. 1mm

FONT1: beamline installation

FONT1: kicker driver amplifier

Allows us to move 65 MeV beam by +- 0.5 mm

3kW amplifier:

3 planar triode

tubes;

7.5 A, 350V o/p

BDIR Workshop, RHUL 21/6/05

Philip Burrows

FONT1: charge normalisation/feedback

BDIR Workshop, RHUL 21/6/05

4

Philip Burrows

FONT1 results (Sept. 2002)

10/1 position correction of 65 MeV e- beam

achieved latency of 67 ns

system tested in feedback and delayloop modes

Philip Burrows

FONT2 Prototype Feedback System

NLCTA: 65 MeV beam, 170ns train, 87ps bunch spacing

FONT2 (2003-4):

3 button BPMs (X-band): difference/sum method charge normalisation: real time with logarithmic amplifiers beam flattener to straighten train profile analogue signal processor high power solid-state amplifier 1/2 lever-arm: two 30cm stripline kickers

Improved demonstration of FB: total latency 54ns (16ns TOF, 37ns electronics) beam moved by c. 1mm

FONT2: beamline configuration

FONT2: BPM signal processing

FONT2: amplifier

Bandwidthlimited (30 MHz)

Philip Burrows

FONT2 results: feedback BPM (Jan 2004)

Philip Burrows

FONT3 Prototype Feedback System

ATF: 1.3 GeV beam, 56ns train, 2.8ns bunch spacing

FONT3 (2004-5): 3 stripline BPMs no charge normalisation analogue signal processor high power, very fast solid-state amplifier FEATHER adjustable-gap kicker

Aiming for ultra-fast demonstration of FB: total latency 20ns (10ns TOF, 10ns electronics) beam moved by c. 100 um

Philip Burrows

FONT3 outline

Philip Burrows

FEATHER

FONT3: beamline configuration

FONT3: latency budget

•	Time of flight kicker – BPM:	4ns
•	Signal return time BPM – kicker: Irreducible latency:	6ns <mark>10ns</mark>
•	BPM processor:	5ns
•	Amplifier + FB:	5ns
	Electronics latency:	10ns
•	Total latency budget:	20ns

Will allow 56/20 = 2.8 periods during bunchtrain

Philip Burrows

FONT3: BPM processor tests (single-bunch, December 2004 beam tests)

FONT3: BPM processor on beamline

21/6/05

FONT3: external BPM processors

FONT3: BPM processor latency measurement

(single bunch, March 17 2005 beam tests)

Latency 4.3 ns

Philip Burrows

FONT3: BPM scale calibration using correctors (20-bunch data, March 17 2005 beam tests)

Philip Burrows

FONT3: BPM position resolution (20-bunch data, March 17 2005 beam tests)

Distributions of residuals (240 beam pulses):

Resolution: 3 - 5 um

Philip Burrows

FONT3: Amplifier/Feedback Board

Philip Burrows

FONT3: Amplifier/Feedback Installation

BDIR Workshop, RHUL 21/6/05

Philip Burrows

FONT3: Beamline Installation

1/6/05

FONT3: Results (June 3 2005) BPM13 sum signal showing 'flyers'

FONT3: Results (June 3 2005) 40 pulses per position setting

FONT3: Averaged results (flyers rejected) (nominal gain + delay settings)

)5

FONT3: Averaged results (HIGH gain, nominal delay settings)

FONT3: Averaged results (LOW gain, nominal delay settings)

FONT3: Average results (variation of delay-loop settings)

Delay loop length

FONT3: Summary

Demonstrated feedback with delay loop

Ultra-fast system: total latency 23 ns

Varied main gain, delay loop length, delay loop gain

- system behaves as expected

Beam quality + limited time (6 shifts) did not allow detailed optimisation of system parameters

FONT1,2,3: Summary

Philip Burrows

FONT2,3: Comparison on same scales

FONT4: Prototype Digital Feedback System

ATF: 1.3 GeV beam, 3 bunches with spacing c. 150ns

FONT4 (2005-6):

modified FONT3 BPM front-end signal processor digital FB system modified FONT2 solid-state amplifier: 300ns long o/p pulse FEATHER adjustable-gap kicker

Aiming for first demonstration of FB w. ILC-like bunches: latency 100ns (electronics) stabilisation of 3rd bunch at um level

Possible first component tests at ATF December 2005/March 2006

Philip Burrows

FONT5 Multibunch Feedback System?

ATF: 1.3 GeV beam, 20? bunches with spacing c. 300ns - depends on success of fast ring extraction program

FONT5 (2007?): FONT4 with improved digital FB system: FB algorithm development adaptive gain inclusion of feed-forward information

Vital component of ATF2 beam stabilisation systems

- - -

ESA: 30 GeV beam, single bunch

BPM survivability tests (2006-7):

produce 'spray beam' to model ILC primary e+e- flux mechanical mockup of forward material in ILC IR showering -> secondary e+e- and gammas irradiate BPM in realistic environment, study: noise on direct beam signals long-term BPM stability and performance