

Design of a Crab cavity for the ILC

ILC-BDIR 21/06/2005

Graeme Burt Philippe Goudket Carl Beard Alexander Kalinin Amos Dexter

- Lancaster University
- ASTeC
- ASTeC
- ASTeC
- Lancaster University

What is a crab cavity?

Crossing angle is introduced to aid beam extraction

What is a crab cavity?

Head-on collision

Maximum luminosity

Crossing angle introduced

Reduced luminosity due to crossing angle

Crossing angle with crab rotation

Effective head-on collision

What is a crab cavity?

- The crab cavity imparts a transverse momentum to the bunch.
- The bunch continues to rotate outside the cavity.

Why is a crab cavity different from an accelerating cavity?

Why is a crab cavity different from an accelerating cavity?

- Magnetic Field as seen by front, middle, and back of the bunch as a function of position across the cavity.
- (At any instant the magnetic field is uniform across the cavity)

SC Deflecting cavity development worldwide

- CERN/Karlsruhe SC deflecting cavity for separating the kaon beam 1970's, 2.86 GHz
- Cornell 1500 MHz crab cavity 1/3 scale models 1991
- KEK 500 MHz crab cavity with extreme polarization 1993 - Present
- Fermilab CKM deflecting cavity 2000 present
- CERN is again interested in crab cavities or LHC upgrades

What are the main problems?

Transverse deflection is caused by :-

- •Field asymmetry due to Microphonics
- •Phase stability of dipole mode
- •Deflection by other modes,
 - •Higher order modes (HOM)
 - •Lower order modes (LOM)
 - •Same order modes (SOM)

Tolerances to transverse deflection

Loss in luminosity due to transverse deflection

Same order modes

Dipole mode has more than one polarisationThese polarisations must be separated

Elliptical cross section.

KEKB Coaxial beampipe coupler

Co-axial waveguide couples to monopole modes

Squashed Crab cavity for B-factories

(K. Akai et al., Proc. B-factories, SLAC-400 p.181 (1992).)

Co-axial coupler for LOM (Super KEKB)

Using co-axial waveguide off axis is a better design as it is removed from the beampipe.

Co-axial coupler for LOM (Super KEKB)

Additional waveguide couplers are required for the TE111 mode.

Co-axial coupler for LOM (Super KEKB)

Cavity asymmetry / microphonics

• Magnetic field as seen by the middle of the bunch as a function of position across a cavity cell.

Position on z axis

Maximum Magnetic field.

Frequency Choice, 3.9GHz vs. 1.3GHz

2 RF Frequency (GHz) 4

- B_{max} drops with increasing frequency in SC cavities
- Size of cavity is inversely proportional to frequency
- The phase tolerance is relaxed for higher frequencies.

Difficult to damp LOMs in the middle cells.

ASTeC

Co-axial coupler for LOM

Conclusion

- Cavity should be very stable.
- Crab cavity should be superconducting.
- Cavity should have an elliptical cross section.
- LOM damping in multicell cavities will be a major consideration in the design.
- The optimum design should have as small a ratio as possible between the surface magnetic field and the magnetic field on axis.