## Beam Dynamics Studies in Europe

D. Schulte

## Goals

- Reliably predict luminosity performance
- Ensure that predicted luminosity is acceptable
- Reliably predict background conditions
- Ensure that predicted levels are acceptable
$\Rightarrow$ Need to develop codes and benchmark them
$\Rightarrow$ Need to develop tuning strategies with acceptable performance and define tolerances on imperfections


## Driving Design Decisions

- The GDE requests to identify design issues as soon as possible and to address them in a hurry
- Since most resources are integrated in EU or UK co-funded research, want to address issues respecting commitments
- Address a number of issues as detailed below
- But driving decisions is only part of the game


## Scientific Community Support

- Parallel studies of beam dynamics issues are essential
- to verify results
- to help making sure nothing is forgotten
- to improve performance by competition
- For the LHC studies at many other colliders are very important
- ILC is more lonesome
$\Rightarrow$ other linear accelerators are important
$\Rightarrow$ CLIC is scientifically important
$\Rightarrow$ need to ensure parallelism in different ways
- Exchange of beam dynamics experts with other experts essential
- Interface standards help to ease information exchange


## Overview

- Beam dynamics studies are to a large extent organised in
- EUROTeV: a design study in which resources are available to hire people
$\Rightarrow$ beam dynamics mainly in the ILPS (integrated luminosity performance studies) work package
- ELAN: a network to allow efficient information exchange $\Rightarrow$ has a beam dynamics work package
- other contributions
- EUROTeV and ELAN also contain non-ILC work
$\Rightarrow$ will concentrate on ILC here


## Beam Dynamics Issues

- Design of the different lattices (overlap with other working groups) bunch compressor(s), main linac, collimation system, diagnostics system(s), final focus system, post collision line
- Beam-based alignment and tuning of these systems
- Feeedback systems
- Measurement of beam collision parameters in post collision line
- Collimation and background affecting luminosity


## Bunch Compressor Design

M. Pedrozzi

- Significant effort in the US
$\Rightarrow$ reduced effort in Europe
- Simulate US design for benchmarking purposes
- Multi-TeV option
$\Rightarrow$ can learn something for ILC


## Integrated Luminosity Performance Studies

Ph. Burrows, D. Schulte, N. Walker, G. White

- Study the alignment, feedback and tuning of ILC
- A part of the effort is for CLIC, but even that will be made useful for ILC
- Main emphasis on beam delivery system, main linac and luminosity optimisation
- Fully integrated study
- Need agreement on diagnostics tolerances, imperfections, wakefield modelling, standard interfaces, benchmarking


## Main Linac

- Studied TESLA main linac (TRC)
- Recent results (PAC) differed from previous ones
$\Rightarrow$ maybe problem has been found but shows importance of comparisons
- Update simulations for the ILC
- Improve the level of detail in the simulations
- Evaluate tuning strategies based on emittance/luminosity measurements
- Design issues: lattice, tunnel, diagnostics, beam position measurements in cavities


## Beam Delivery System

- Benchmarking of MAD, SAD, PLACET
- Design of ILC BDS beam-based feedback system including component specifications and locations
- Develop BDS beam-based alignment strategy
- Develop BDS beam-based feedback and tuning strategy
- Incorporate BDS into global feedback and tuning strategy
- Participation to ATF2 for benchmarking/real life application
- Non-linear collimation system could become interesting for ILC


## Beam-Beam Simulations

Ph. Bambade, D. Schulte

- Further development of beam-beam code GUINEA-PIG
- benchmarking with CAIN and physics generators
- include Bhabha scattering
- improve hadronic event generation
- improve usebility, e.g. automatic grid choice
- include depolarisation


## Post Collision Line Studies

V. Ziemann, Ph. Bambade

- Beamstrahlung studies including comparison of $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{e}^{-} \mathrm{e}^{-}$
- Comparison of BDSIM and DIMAD for post collision line (large energy spread)
- Tracking code for arbitrary fields
- Evaluation of losses in the post collision line
- Upgrade of neutron simulation in BDSIM
- Optimisation of parameters for $\mathrm{e}^{-} \mathrm{e}^{-}$collision
- Study of background levels (photons, electrons and neutrons) in detectors due to losses in post collision line
- Comparison of 2 mrad and 20 mrad crossing angle


## Further Post Collision Line Studies

- Extrapolation of sub-TeV post collision line to higher energies and luminosities
- Identification of shortcomings of extrapolation and adapted design for multi-TeV energies
$\Rightarrow$ helps to solve problem with ILC high luminosity 1 TeV design
- Inclusion of diagnostics: beamstrahlung, coherent pairs, polarisation


## Halo and Tail Generation

## H. Burkhardt

- A large uncertainty exists about the level of halo that needs to be collimated
- Will try to review the different processes
- make comprehensive list of relevant processes
- address most important ones
- make analytical models where appropriate
- develop codes where appropriate
- identify benchmark potential
- Develop a code module that provides a tail model that can be used in different collimation system studies


## Collimation System Studies

G. Blair, R. Barlow, A. Faus-Golfe, D. Schulte, N. Walker

- Close collaboration with BDS working group
- Further development of BDSIM, MERLIN and PLACET
- Efficiency studies
- Collimator survival
- Neutrons, implementation into BDSIM and studies
- Muons, evaluation of BDS with respect to muons


# Study of Failure Modes 

N. Walker, D. Schulte

- Derive list of critical failures
- Agree globally on prioritisation
- Develop software
- Study failures


## Code Development

- MERLIN: a beam transport code mainly developed at DESY (N. Walker)
- PLACET: a beam transport code developed at CERN (D. Schulte)
- GUINEA-PIG: a beam-beam simulation code originally from DESY, later CERN and now also LAL (Ph. Bambade, D. Schulte)
- BDSIM: a collimation simulation code from RHUL (G. Blair)
- Integrated packages based on the above codes, e.g. QMUL (G. White)
- A main issue is to benchmark the different codes, which is vital to ensure the correctness of the predictions


## Conclusion

- A wide programme for beam dynamics exist in Europe
- It is largely based on new people
$\Rightarrow$ Will need some time to get going at full speed

