Main Linac Simulation

- Main Linac Alignment Tolerances
- From single bunch effect

ILC-MDIR Workshop 20050622
Kiyoshi KUBO
References:
TESLA TDR
ILC-TRC-2 Report (2003)
Interim reports by K.Kubo
http://lcdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050325a.pdf
http://Icdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050516.pdf

Main Linac Simulation

- Only single bunch effects were considered
- Only vertical motion (no horizontal)
- Short range wakefunctions in TESLA-TDR were used.
- Tracking simulation using "SLEPT".
- Considered errors:
- Offset misalignment of quads,
- Offset misalignment of cavities,
- Tilt misalignment of cavities (rotation around x axis),
- quad-BPM offset (unknown error of quad-BPM cwnter)
- BPM resolution (measurement by measurement error)
- Each quad has BPM and steering corrector
- Average of vertical emittance at the end of the linac over 100 different random seeds will be presented for each condition.

Beam parameters

Initial and final beam energy	$5 \mathrm{GeV} \rightarrow 250 \mathrm{GeV}$
Gradient	$35 \mathrm{MV} / \mathrm{m}$
Bunch intensity	2 E 10
Bunch length	$0.3 \mathrm{~mm}(\mathrm{rms})$
Initial momentum spread	$2.8 \%(\mathrm{rms})$
Initial normailized emittance	$2 \mathrm{E}-8 \mathrm{~m}$

Optics (two cases)

	Weaker focus	Stronger focus
$5-125 \mathrm{GeV}$	2 modules/quad	1 module/quad
$125-250 \mathrm{GeV}$	3 modules/quad	2 modules/quad
cavities/module	10 cavities/module	
phase advance	$\pi / 6 /$ FODO cell	

Optics

Square root of beta-function of three models;
(a) $35 \mathrm{MV} / \mathrm{m}$ weak focussing
from 5 GeV to 125 GeV : 2 modules/quad from 125 GeV to 250 GeV : 3 modules/quad (b) $35 \mathrm{MV} / \mathrm{m}$ strong focussing from 5 GeV to 125 GeV : 1 modules/quad from 125 GeV to 250 GeV : 2 modules/quad

Emitttance vs. cavity offset, quad offset and cavity tilt. No correction.

These give tolerances in time scale faster than corrections in the main linac and slower than orbit feedback at IP.

Steering corrections for static misalignment

Use steering, or correction coils of quads.
Every quad has a BPM and a correction coils.
Correction (A): One - to - one Minimize BPM readings.

Correction (B): Kick minimization
Minimize $\sum_{i}\left(\theta_{i}-k_{i} y_{i}\right)^{2}$,
(A) is too simple (big emittance dilution)
(B) and (C) give similar emittance, but
(B) gives big orbit
θ_{i} : kick angle of steering at i - th quad
y_{i} : BPM reading at i-th quad
k_{i} : K-value of the i-th quad
Correction (C): Combined (A) and (B)

$$
\begin{aligned}
\text { Minimize } & \sum_{i} r^{2} y_{i}^{2}+\sum_{i}\left(\theta_{i}-k_{i} y_{i}\right)^{2}, \\
& r \text { : Weight ratio. }=10^{-3}
\end{aligned}
$$

Examples of orbit after correction (B) and (C).

Quad misalignment 0.3 mm , Quad-BPM offset $20 \mu \mathrm{~m}$
Orbit correction (B)
Fig. 3

Orbit correction (C)

Emittance vs. Quad and Cavity misalignment (the same rms for quads and cavities). Quad-BPM offset $20 \mu \mathrm{~m}$.

Emittance vs. Quad-BPM offset. Quad and Cavity misalignment 0.3 mm (the same rms for quads and cavities).

These give static alignment (offset) tolerances.

Steering Correction

Use steering, or correction coils of quads. Every quad has a BPM and a correction coils.

$$
\begin{aligned}
\text { Minimize } & \sum_{i} r^{2} y_{i}^{2}+\sum_{i}\left(\theta_{i}-k_{i} y_{i}\right)^{2}, \\
& \theta_{i}: \text { kick angle of steering at } i-\text { th quad } \\
y_{i} & : \text { BPM reading at } i-\text { th quad } \\
k_{i} & : \text { K }- \text { value of the } i \text { - th quad } \\
r & : \text { Weight ratio. }=10^{-3}
\end{aligned}
$$

Not very effective for cavity tilt.

Tilt Compensation + Steering Correction

(1) Perform steering correction
(2) Turn off RF of cavities in one FODO cell (40 or 60 cavities for weaker focus optics), scale the strength of magnets and accelerating voltage of downstream RF cavities to the beam energy, and measure orbit difference from nominal orbit.
Then, set two steerings (at quad in the cell) to compensate the difference. Perform this for every cell.
(3) Perform steering correction again keeping the compensation,

Minimize $\sum_{i} r^{2} y_{i}^{2}+\sum_{i}\left(\theta_{i}-\theta_{t i}-k_{i} y_{i}\right)^{2}$,
$\theta_{t i}$: kick angle for cavity tilt compensation at i - th quad
(4) Iterate (2) and (3) four times for better compensation

Tilt Compensation

Use two steering for compensation

Emittance vs. cavity tilt angle.
Quad offset 300 micron, Cavity offset 300 micron Quad-BPM offset error 20 micron, BPM resolution 3 micron

Emittance vs. BPM resolution.
Quad offset 300 micron, Cavity offset 300 micron Quad-BPM offset error 20 micron, Cavity tilt 300 micro-rad

Rough tolerances.

Static misalignment (Slower than the correction in the main linac) [additional 5\% emittance dilution]		
Quad offset	$400 \mu \mathrm{~m}$	
Cavity offset	1 mm	
Cavity tilt	$150 \mu \mathrm{rad}$	
Quad - BPM offset	$15 \mu \mathrm{~m}$	
Fast movement (Faster than the correction in the main linac but slower than the orbit feedback at IP)		
Quad offset	$0.4 \mu \mathrm{~m}$	
Cavity offset	$600 \mu \mathrm{~m}$	
Cavity tilt	$2 \mu \mathrm{rad}$	
Mmeasurement by measurement [additional 5\% emittance dilution]		
BPM Resolution	$10 \mu \mathrm{~m}$	

