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Outline

● freedoms/arbitrariness when using LCIO

● need of conventions

● what to do



LCIO vs. Modularity

● LCIO
– designed to fit the needs of LC development
– general enough to cover any detector design

● Marlin
– provides modularity

● users wish
– write software once, apply to many (different) 

LCIO files
● switch from MC to real data
● concept studies: 

change detector component; change only reco. 
modules directly affected by this change



The Problem

● ambiguities in LCIO 
– meaning of certain indices is left to the user
– flexible design of LCIO does not fix the structure 

of an event

● the same problem with MARLIN
– may ways to pass information from one 

processor to another
– names of collections
– “granularity” of information stored in LCIO file



Meaning of Indices, Flagwords



LCIO Parameters



LCIO Parameters



How to Handle Indeces, etc.

● don't hard code the numbers
– use at least constants in a header file
– better: extract the numbers at runtime from the 

parameter sections
=> Naming conventions, not numbering conventions



Keywords

● keywords have arbitrary names
– naming conventions are needed
– some keywords relevant for physics

 -> ask LCIO authors to provide string constants



Structure of Events

● Task:
“Get the energy, which a reconstructed 
particle deposited in the e-cal”

● Problem:
– LCIO does not want to force an detector to have 

an e-cal and h-cal (?)
– thus LCIO cannot fix the way to store this 

information



ReconstructedParticle



Cluster



Several Possibilities
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Modularity

● MARLIN modules have to process LCIO 
events prepared by other modules/software

– collection names must be known

– data needed by a processor must be in the event

– event structure must be compatible

– processors should be able to change “boundary 
conditions” (tpc radius, calorimeter cell sizes, ...)



Conclusions

● e.g. MARLIN processors:
– provide steering parameter to change collection 

names
– provide steering parameters for external 

parameters (or use geometry API) if possible
● but: 

– providing steering parameters for everything 
doesn't seem to be feasible

– changing default values (e.g. collection names) 
for every processor can be very annoying

– some input for a processor (needed collections, 
etc.) cannot be changed



Conclusions

=> conventions are needed

● useful conventions emerge from actual 
implementations
=> there are (many) candidates for conventions



Todo (i)

● find conventions

– talk early to other software developers (not just 
those in the office next to you)

– figure out where conventions are needed

– find out which conventions seem to be useful / 
practicable

– single out one (or a few) convention(s)
( a small set of conventions can be hidden by 
helper functions “getEcalEnergy()” )



Todo (ii)

● documentation
– create “self documenting” LCIO files

i.e. put meaning of bitfields, indices, etc. in the 
parameter bock of collections, events, runs

– write human readable conventions
i.e. write down which input your processors 
exactly needs 

– gather several conventions at a central place
(provide helper functions, libraries, ...)

– write software to check whether a LCIO file 
follows certain conventions


