
User Conventions for LCIO

LC software workshop
Hamburg, 27/28 June 2005

Jörgen Samson

Outline

● freedoms/arbitrariness when using LCIO

● need of conventions

● what to do

LCIO vs. Modularity

● LCIO
– designed to fit the needs of LC development
– general enough to cover any detector design

● Marlin
– provides modularity

● users wish
– write software once, apply to many (different)

LCIO files
● switch from MC to real data
● concept studies:

change detector component; change only reco.
modules directly affected by this change

The Problem

● ambiguities in LCIO
– meaning of certain indices is left to the user
– flexible design of LCIO does not fix the structure

of an event

● the same problem with MARLIN
– may ways to pass information from one

processor to another
– names of collections
– “granularity” of information stored in LCIO file

Meaning of Indices, Flagwords

LCIO Parameters

LCIO Parameters

How to Handle Indeces, etc.

● don't hard code the numbers
– use at least constants in a header file
– better: extract the numbers at runtime from the

parameter sections
=> Naming conventions, not numbering conventions

Keywords

● keywords have arbitrary names
– naming conventions are needed
– some keywords relevant for physics

 -> ask LCIO authors to provide string constants

Structure of Events

● Task:
“Get the energy, which a reconstructed
particle deposited in the e-cal”

● Problem:
– LCIO does not want to force an detector to have

an e-cal and h-cal (?)
– thus LCIO cannot fix the way to store this

information

ReconstructedParticle

Cluster

Several Possibilities

rec. part.

cluster

subdet. energies

cluster cluster

cluster cluster

rec. part.

cluster cluster

cluster cluster

cluster cluster

rec. part.

cluster

cluster

cluster

cluster

cluster

cluster

cluster

cluster

Modularity

● MARLIN modules have to process LCIO
events prepared by other modules/software

– collection names must be known

– data needed by a processor must be in the event

– event structure must be compatible

– processors should be able to change “boundary
conditions” (tpc radius, calorimeter cell sizes, ...)

Conclusions

● e.g. MARLIN processors:
– provide steering parameter to change collection

names
– provide steering parameters for external

parameters (or use geometry API) if possible
● but:

– providing steering parameters for everything
doesn't seem to be feasible

– changing default values (e.g. collection names)
for every processor can be very annoying

– some input for a processor (needed collections,
etc.) cannot be changed

Conclusions

=> conventions are needed

● useful conventions emerge from actual
implementations
=> there are (many) candidates for conventions

Todo (i)

● find conventions

– talk early to other software developers (not just
those in the office next to you)

– figure out where conventions are needed

– find out which conventions seem to be useful /
practicable

– single out one (or a few) convention(s)
(a small set of conventions can be hidden by
helper functions “getEcalEnergy()”)

Todo (ii)

● documentation
– create “self documenting” LCIO files

i.e. put meaning of bitfields, indices, etc. in the
parameter bock of collections, events, runs

– write human readable conventions
i.e. write down which input your processors
exactly needs

– gather several conventions at a central place
(provide helper functions, libraries, ...)

– write software to check whether a LCIO file
follows certain conventions

