Single heavy neutrino production at e^+e^- colliders

J. A. Aguilar-Saavedra

Centro de Física Teórica de Partículas (CFTP) Instituto Superior Técnico, Lisbon

> ECFA ILC workshop Vienna, Nov. 14th, 2005

(日)

Heavy neutrinos at collider scale:

Theoretical problems

and experimental advantages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Theoretical problems

Seesaw contributions $m_{\nu} \sim Y^2 v^2 / m_N$ to light neutrino masses

- either *Y* very small (*N* decoupled from the light sector)
- or cancellation with another source for light neutrino masses

Need to decouple mixing angles from mass ratios

Usual seesaw:
$$m_{\nu} \sim \frac{Y^2 v^2}{m_N}, V \sim \frac{Y v}{m_N} \Rightarrow V \sim \sqrt{\frac{m_{\nu}}{m_N}}$$

Both difficulties can be solved but require symmetries

Example:

- Little Higgs models [Aguila, Masip, Padilla, PLB '05] Pseudo-Dirac neutrinos with mass \sim TeV, mixing angle $\sim v/f$, with $f \sim 1$ TeV
- More examples welcome ...

イロト (得) (ヨト (ヨト 三日) の()

2 Constraints on light-heavy mixing

3 Single *N* production at e^+e^- colliders

(日)

Overview of the model

We consider the possibility of Majorana or Dirac neutrinos

We introduce additional neutrino fields
$$\begin{bmatrix} N'_{iL}, \nu'_{iR}, N'_{iR} & \text{Dirac} \\ N'_{iR} & \text{Majorana} \end{bmatrix}$$

In both cases the mass terms are written similarly

$$\mathcal{L}_{\text{mass}} = - \left(\bar{\nu}'_L \, \bar{N}'_L \right) \begin{pmatrix} \frac{\nu}{\sqrt{2}} Y' & \frac{\nu}{\sqrt{2}} Y \\ B' & B \end{pmatrix} \begin{pmatrix} \nu'_R \\ N'_R \end{pmatrix} + \text{H.c.} \tag{D}$$

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} \left(\bar{\nu}'_L \, \bar{N}'_L \right) \begin{pmatrix} M_L & \frac{\nu}{\sqrt{2}} Y \\ \frac{\nu}{\sqrt{2}} Y^T & M_R \end{pmatrix} \begin{pmatrix} \nu'_R \\ N'_R \end{pmatrix} + \text{H.c.} \qquad (M)$$

with $\nu'_{iR} \equiv (\nu'_{iL})^c$, $N'_{iL} \equiv (N'_{iR})^c$ in the Majorana case

イロト (得) (ヨト (ヨト 三日) の()

We do not introduce extra interactions

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \bar{l}_{L} \gamma^{\mu} V \begin{pmatrix} \nu_{L} \\ N_{L} \end{pmatrix} W_{\mu} + \text{H.c.}$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} (\bar{\nu}_{L} \ \bar{N}_{L}) \gamma^{\mu} X \begin{pmatrix} \nu_{L} \\ N_{L} \end{pmatrix} Z_{\mu}$$

with *V* of dimension 3×6 and $X = V^{\dagger}V$

$$V_{\ell N} \text{ small} \longrightarrow egin{array}{ccc} X_{
u_{\ell}N} = V_{\ell N} & ext{also small} \ X_{N_iN_j} = \sum_{\ell=e,\mu, au} V^*_{\ell N_i} V_{\ell N_j} & ext{even smaller} \end{array}$$

N produced singly through interactions $\propto V_{\ell N}$ *N* pairs produced through interactions $O(V^2)$ Study single *N* production

イロト (得) (ヨト (ヨト 三日) の()

We do not introduce extra interactions

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \bar{l}_{L} \gamma^{\mu} V \begin{pmatrix} \nu_{L} \\ N_{L} \end{pmatrix} W_{\mu} + \text{H.c.}$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} (\bar{\nu}_{L} \ \bar{N}_{L}) \gamma^{\mu} X \begin{pmatrix} \nu_{L} \\ N_{L} \end{pmatrix} Z_{\mu}$$

with *V* of dimension 3×6 and $X = V^{\dagger}V$

$$V_{\ell N} \text{ small} \longrightarrow egin{array}{ccc} X_{
u_{\ell}N} = V_{\ell N} & ext{also small} \ X_{N_iN_j} = \sum_{\ell=e,\mu, au} V^*_{\ell N_i} V_{\ell N_j} & ext{even smaller} \end{array}$$

N produced singly through interactions $\propto V_{\ell N}$ *N* pairs produced through interactions $O(V^2)$ Study single *N* production

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のQ@

N decays:	
$N \to W^+ \ell^-$	plus $N \to W^- \ell^+$ (M)
$N \to Z \nu_\ell$	$\Gamma_M = 2 \Gamma_D$
$N \to H \nu_\ell$	$\Gamma_M = 2 \Gamma_D$

- For equal $|V_{\ell N}|$, the total width of a Majorana neutrino is two times larger than for a Dirac neutrino
- For $m_N \gg M_Z, M_W, M_H$

 $\Gamma(N \to W^{\pm} \ell^{\mp}) \; : \; \Gamma(N \to Z \nu_{\ell}) \; : \; \Gamma(N \to H \nu_{\ell}) \; = \; 2 \; : \; 1 \; : \; 1$

イロト (得) (ヨト (ヨト 三日) の()

Constraints on light-heavy mixing

Mixing angles $V_{\ell N}$ constrained by two kinds of processes:

- Tree-level processes measuring ℓν_ℓW, ν_ℓν_ℓZ couplings: π → ℓν_ℓ, Z → νν̄...
- LFV processes to which *N* can contribute at one loop: $\mu \rightarrow e\gamma, Z \rightarrow \ell \ell' \dots$

These processes constrain the quantities

$$\Omega_{\ell\ell'} \equiv \delta_{\ell\ell'} - \sum_{i=1}^{3} V_{\ell\nu_i} V_{\ell'\nu_i}^* = \sum_{i=1}^{3} V_{\ell N_i} V_{\ell'N_i}^*$$

Present limits

[Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

First group of processes

$$\sum_{i} |V_{eN_{i}}|^{2} \leq 0.0054$$

 $\sum_{i} |V_{\mu N_{i}}|^{2} \leq 0.0096$
 $\sum_{i} |V_{\tau N_{i}}|^{2} \leq 0.016$

model-independent cannot be evaded Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$
$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

$$\sum_{i} V_{\mu N_i} V_{\tau N_i}^* \leq 0.01$$

model-dependent cancellations possible

Present limits

[Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

First group of processes

$$\sum_{i} |V_{eN_{i}}|^{2} \leq 0.0054$$

 $\sum_{i} |V_{\mu N_{i}}|^{2} \leq 0.0096$
 $\sum_{i} |V_{\tau N_{i}}|^{2} \leq 0.016$

model-independent cannot be evaded Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$
$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

$$\sum_{i} V_{\mu N_i} V_{\tau N_i}^* \leq 0.01$$

model-dependent cancellations possible

Present limits

[Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

First group of processes

$$\sum_{i} |V_{eN_{i}}|^{2} \leq 0.0054$$

 $\sum_{i} |V_{\mu N_{i}}|^{2} \leq 0.0096$
 $\sum_{i} |V_{\tau N_{i}}|^{2} \leq 0.016$

model-independent cannot be evaded Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$
$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$
$$\sum_{i} V_{\mu N_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

model-dependent cancellations possible

Heavy neutrino direct signals

At e^+e^- colliders:

- Single *N* production: $e^+e^- \rightarrow N\nu$
- *N* pair production $e^+e^- \rightarrow NN$ \iff

At $e^-\gamma$ colliders:

• $e^-\gamma \rightarrow NW^-$

At LHC:

•
$$pp \rightarrow \ell^{\pm} \ell'^{\pm} W^{\mp}$$

[Gluza, Zrałek, PRD '97]

suppressed by mixing and phase space

[Bray, Lee, Pilaftsis '05]

イロト (四) (日) (日) (日) (日) (日)

[Ali, Borisov, Zamorin EPJC '01]

Single *N* production at e^+e^- colliders

イロト 不得 トイヨト イヨト 正正 ろくで

Single *N* production at e^+e^- colliders

ISR and beamstrahlung effects are included

We perform a parton-level analysis, with a Gaussian smearing of charged lepton and jet energies

$$\frac{\Delta E^{e}}{E^{e}} = \frac{10\%}{\sqrt{E^{e}}} \oplus 1\% \qquad \frac{\Delta E^{j}}{E^{j}} = \frac{50\%}{\sqrt{E^{j}}} \oplus 4\%$$
$$\frac{\Delta E^{\mu}}{E^{\mu}} = 0.02\% E^{\mu} (0.005\% E^{\mu}) \qquad \text{ILC} \quad (\text{CLIC})$$

Kinematical cuts $p_T \ge 10$ GeV, $|\eta| \le 2.5$, $\Delta R \ge 0.4$

Light neutrino momentum determined from missing 3-momentum and requiring $p_{\nu}^2 = 0$

イロト 人間 トイヨト イヨト 山田 ろくで

Main characteristics of the $\ell W \nu$ signal

- Dominated by on-shell $N\nu$ production
- Observable only if N couples to the electron
- For equal couplings, equal cross sections for Dirac and Majorana heavy neutrinos
- At CLIC, smaller SM backgrounds in the μ and τ channels

イロト (得) (ヨト (ヨト 三日) の()

Discovery of heavy neutrinos

Heavy neutrinos: peaks in the $\ell j j$ invariant mass distribution

(日)

Discovery limits / upper bounds on V_{eN} , m_N

J. A. Aguilar-Saavedra Single heavy neutrino production at e^+e^- colliders

Cross sections for $e^+e^- \rightarrow e^{\pm}jj\nu$

Cross sections decrease relatively slowly with m_N

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Combined limits on V_{eN} and $V_{\mu N}$ or $V_{\tau N}$

The statistical significances of the two channels are added

(CLIC)

Combined limits on V_{eN} and $V_{\mu N}$ or $V_{\tau N}$

The statistical significances of the two channels are added

(ILC)

Determination of heavy neutrino character

 φ_N angle between N and incoming e^+/e^- for ℓ^+/ℓ^- final states \checkmark See diagrams

Measurement of ℓNW couplings

S_e, S_μ, S_τ excess of events in the peak region

$$S_{\ell} = A_{\ell} V_{eN}^2 \frac{V_{\ell N}^2}{V_{eN}^2 + V_{\mu N}^2 + V_{\tau N}^2}, \quad A_{\ell} \text{ constants}$$

 A_ℓ determined from MC simulation

 $V_{eN}^2 = \frac{S_e}{A_e} + \frac{S_{\mu}}{A_{\mu}} + \frac{S_{\tau}}{A_{\tau}}$ $\frac{V_{\ell N}^2}{V_{eN}^2} = \frac{S_{\ell}}{A_{\ell}} \left(\frac{S_e}{A_e}\right)^{-1} \qquad \ell = \mu, \tau$

Measurement of ℓNW couplings

S_e, S_μ, S_τ excess of events in the peak region

$$S_{\ell} = A_{\ell} V_{eN}^2 \frac{V_{\ell N}^2}{V_{eN}^2 + V_{\mu N}^2 + V_{\tau N}^2}, \quad A_{\ell} \text{ constants}$$

 A_ℓ determined from MC simulation

$$\begin{array}{rcl} V_{eN}^2 &=& \frac{S_e}{A_e} + \frac{S_{\mu}}{A_{\mu}} + \frac{S_{\tau}}{A_{\tau}} \\ &\\ &\\ \frac{V_{\ell N}^2}{V_{eN}^2} &=& \frac{S_{\ell}}{A_{\ell}} \left(\frac{S_e}{A_e}\right)^{-1} \qquad \ell = \mu, \tau \end{array}$$

イロト (得) (ヨト (ヨト 三日) の()

Measurement of ℓNW couplings

Example

Calculate A_{ℓ} for a "reference" set of couplings and assume a 10% common systematic uncertainty

Use as input the cross sections for $V_{eN} = V_{\mu N} = V_{\tau N} = 0.04$ ($m_N = 1.5 \text{ TeV}$)

Values extracted:

 $\begin{array}{lll} V_{eN} &=& 0.0388 \pm 0.00034 \; ({\rm stat}) \pm 0.0019 \; ({\rm sys}) \\ V_{\mu N}/V_{eN} &=& 1.007 \pm 0.016 \; ({\rm stat}) \\ V_{\tau N}/V_{eN} &=& 1.030 \pm 0.028 \; ({\rm stat}) \end{array}$

Precision: 5% for V_{eN} , 2 – 3% for the ratios

(CLIC)

Conclusions

- Heavy neutrinos in the 1 2 TeV range can be produced at CLIC if they have a coupling to the electron of 0.004 0.01 or larger
- Heavy neutrinos with masses of few hundreds of GeV can already be produced at ILC if they have a coupling $V_{eN} \sim 0.01$
- If produced, their Dirac or Majorana nature can easily be established
- If produced, their couplings to the charged leptons can be measured
- If they have masses of few hundreds of GeV, the chirality of these couplings might be determined

イロト (得) (ヨト (ヨト 三日) の()

Other future heavy neutrino signals

Direct signals:

Indirect signals:

- $Z \rightarrow \ell^+ \ell'^-$ at ILC [Illana, Riemann PRD '01]
- $\mu \rightarrow e\gamma$, μe conversion ...
- CP violation in neutrino oscillations [Bo

[Bekman et al., PRD '02]

イロト 人間 トイヨト イヨト 山田 ろくで

A closer look to heavy neutrino interactions

lNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N \ W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell \ W_{\mu}^{\dagger} \right) \quad (\mathbf{D}, \mathbf{M})$$

 $\nu_\ell NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu} \quad (\mathbf{D}, \mathbf{M})$$
$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu} \quad (\mathbf{M})$$

 $\nu_{\ell} NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g \, m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} \, V_{\ell N} P_{R} N + \bar{N} \, V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H \quad (\mathbf{D}, \mathbf{M})$$

$$= -\frac{g \, m_{N}}{2M_{W}} \, \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H \quad (\mathbf{M})$$

$$\blacksquare \mathbf{Back}$$

A closer look to heavy neutrino interactions

lNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N \ W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell \ W_{\mu}^{\dagger} \right) \quad (\mathbf{D}, \mathbf{M})$$

 $\nu_\ell NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu} \quad (\mathbf{D}, \mathbf{M})$$

$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu} \quad (\mathbf{M})$$

 $\nu_{\ell} NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} V_{\ell N} P_{R} N + \bar{N} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H \quad (\mathbf{D}, \mathbf{M})$$

$$= -\frac{g m_{N}}{2M_{W}} \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H \quad (\mathbf{M})$$
(Back)

A closer look to heavy neutrino interactions

lNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N \ W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell \ W_{\mu}^{\dagger} \right) \quad (\mathbf{D}, \mathbf{M})$$

 $\nu_\ell NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu} \quad (\mathbf{D}, \mathbf{M})$$

$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu} \quad (\mathbf{M})$$

 $\nu_{\ell} NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} V_{\ell N} P_{R} N + \bar{N} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H \quad (\mathbf{D}, \mathbf{M})$$

$$= -\frac{g m_{N}}{2M_{W}} \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H \quad (\mathbf{M})$$

(日)

・ロト < 個ト < 目ト < 目ト < 目ト < のへの

・ロト < 個ト < 目ト < 目ト < 目ト < のへの

Dominant signal diagrams for $\ell = e$

Diagrams related by $t \leftrightarrow u$ interchange

▲ Back ▲ Results ▲ Skip

イロト (母) (ヨト (ヨト) ヨヨ ののの

・ロト < 個ト < 目ト < 目ト < 目ト < のへの

Dominant signal diagrams for $\ell = \mu$ $e \longrightarrow V^{e}$ $e \longrightarrow V^{e}$ W^{+} W^{+} W^{+} $e \longrightarrow Z^{N}$ $e \longrightarrow W^{+}$ $e \longrightarrow V^{e}$ e e N

Dominant diagrams involve eWN interaction

 ν_{μ}

W

e

▲ Back

イロト (得) (ヨト (ヨト ヨヨ のの)

 W^+

μ

ν

 W^+

μ

 ν_e

W

J. A. Aguilar-Saavedra Single heavy neutrino production at e^+e^- colliders

SM diagrams for $\ell = e$

Dominant SM diagrams for $\ell = e$

Resonant W^+W^- production

▲ Back

イロト (母) (ヨト (ヨト) ヨヨ ののの

(ILC)

Dominant SM diagrams for $\ell = e$

・ロト < 個ト < 目ト < 目ト < 目ト < のへの

(CLIC)

SM diagrams for $\ell = \mu$

・ロト < 個ト < 目ト < 目ト < 目ト < のへの

J. A. Aguilar-Saavedra Single heavy neutrino production at e^+e^- colliders

 Additional slides
 Feynman diagrams

 Special treatment of the $\tau W \nu$ signal

 Other measurements

Special treatment of the $\tau W \nu$ signal

We select τ hadronic decays to π , ρ , a_1 mesons (Br = 55%) and use τ tagging (efficiency 50%)

We assume that the jet 3-momentum direction is the one of the parent τ and its energy a fraction *x* of the τ energy

We solve for the primary neutrino momentum and x using the constraints

$$E_W + E_\nu + \frac{1}{x}E_j = \sqrt{s}$$
$$\vec{p}_W + \vec{p}_\nu + \frac{1}{x}\vec{p}_j = 0$$
$$p_\nu^2 = 0$$

Chirality of ℓNW couplings

Restrict to decays $W^+ \to c\bar{s} \ (W^- \to \bar{c}s)$ and use *c* tagging to distinguish among the two jets \Im Signal 4 times smaller Define $\theta_{\ell s}$ as the angle between the charged lepton ℓ and the *s* jet in the *W* rest frame

Define the FB asymmetry

$$A_{\rm FB} = \frac{N(\cos\theta_{\ell s} > 0) - N(\cos\theta_{\ell s} < 0)}{N(\cos\theta_{\ell s} > 0) + N(\cos\theta_{\ell s} < 0)}$$
(Back) Next) * Conclusions

Feynman diagrams Special treatment of the $\tau W \nu$ signal Other measurements

Chirality of ℓNW couplings

For a general ℓNW vertex

$$\mathcal{L}_{\ell WN} = -rac{g}{\sqrt{2}}\,ar{\ell}\gamma^{\mu}\left(g_L P_L + g_R P_R
ight)N \,W_{\mu} + ext{H.c.}$$

the FB asymmetry is

$$A_{\rm FB} = \frac{3M_W^2}{4M_W^2 + 2m_N^2} \frac{|g_L|^2 - |g_R|^2}{|g_L|^2 + |g_R|^2}$$

But ... for $m_N \gg M_W$, $A_{\rm FB}$ very small $\ref{m_N}$ $m_N = 1.5 \ {\rm TeV} \longrightarrow A_{\rm FB} = 4.3 \times 10^{-3}$

(日)

Feynman diagrams Special treatment of the $\tau W \nu$ signal Other measurements

 $V_{eN} = 0.073, V_{\mu N} = V_{\tau N} = 0$

(ILC)

イロト 人間 トイヨト イヨト 山田 ろくで

Chirality of ℓNW couplings

Example

Use $m_N = 300 \text{ GeV}$

Theoretical value: $A_{\rm FB} = 0.094$

After subtracting the expected background at the peak, the extracted value is $A_{\rm FB} = 0.083 \pm 0.016$ (stat)

Measurability difficult to assess in general