Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook

NLO simulations of chargino production at the International Linear Collider

Tania Robens

DESY

ECFA ILC Workshop 2005, Vienna

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

= 900

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000	00000	000	00

Introduction and Motivation

- Chargino and Neutralino sector in the MSSM
- \bullet NLO results for $\sigma_{{\rm ee}\,\to\,\widetilde{\chi}\,\widetilde{\chi}}$
- 2 NLO corrections in Whizard
 - Virtual corrections
 - Real photon contributions
 - Photon approximations: validity regions

3 First results:

- σ_{tot}
- angular distributions

4 Summary and Outlook

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
Chargino and	Neutralino sector in the MSSM			

- Supersymmetric theories: New SUSY (breaking) parameters appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

- can be reconstructed from (Choi et al 1998, 2000,2001) masses of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$, $\tilde{\chi}_1^0$ 2σ in the $\tilde{\chi}^{\pm}$ sector
- ⇒ reconstruction of SUSY breaking scale parameters + mechanism

(Blair et al 2002)

• "experimental" and parameter fitting accuracy: % to % \Rightarrow LHC/ILC study group; SFitter/ Fittino \Leftarrow

Tania Robens NLO simulations of chargino production at the ILC

- Supersymmetric theories: New SUSY (breaking) parameters appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

• can be reconstructed from (Choi et al 1998, 2000,2001) $c \rightarrow + c \rightarrow + c \rightarrow 0$

masses of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$, $\tilde{\chi}_1^{0}$ 2 σ in the $\tilde{\chi}^{\pm}$ sector

⇒ reconstruction of SUSY breaking scale parameters + mechanism

(Blair et al 2002)

• "experimental" and parameter fitting accuracy: % to % \Rightarrow LHC/ILC study group; SFitter/ Fittino \Leftarrow

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

4 回 × 3 × 4 3 × 3 1 9 0 0 0

- Supersymmetric theories: New SUSY (breaking) parameters appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

• can be reconstructed from (Choi et al 1998, 2000,2001)

masses of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$, $\tilde{\chi}_1^{0}$ 2 σ in the $\tilde{\chi}^{\pm}$ sector

 $\Rightarrow\,$ reconstruction of SUSY breaking scale parameters $+\,$ mechanism

(Blair et al 2002)

• "experimental" and parameter fitting accuracy: % to % \Rightarrow LHC/ILC study group; SFitter/ Fittino \Leftarrow

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

- Supersymmetric theories: New SUSY (breaking) parameters appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

• can be reconstructed from (Choi et al 1998, 2000,2001)

masses of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$, $\tilde{\chi}_1^{0}$ 2 σ in the $\tilde{\chi}^{\pm}$ sector

 \Rightarrow reconstruction of SUSY breaking scale parameters + mechanism

(Blair et al 2002)

• "experimental" and parameter fitting accuracy: % to % \Rightarrow LHC/ILC study group; SFitter/ Fittino \Leftarrow

Tania Robens NLO simulations of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

 σ_{corr} contributions and dependencies:

σ_{born}

- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

• higher order initial state radiation: $\sigma_{ISR} = \sigma_{ISR}^{O(\alpha)}(Q)$

 λ : photon mass , ΔE : soft cut , $\Delta heta$: collinear angle

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

• emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR} \sigma_{ISR}^{O(\alpha)}(Q)$
 - λ : photon mass , ΔE : soft cut , $\Delta heta$: collinear angle

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

• σ_{born}

- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR} \sigma_{ISR}^{O(\alpha)}(Q)$
 - $\lambda:$ photon mass , $\Delta E:$ soft cut , $\Delta \theta:$ collinear angle

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

- σ_{born}
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR} \sigma_{ISR}^{O(\alpha)}(Q)$
 - $\lambda:$ photon mass , $\Delta E:$ soft cut , $\Delta \theta:$ collinear angle

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

- σ_{born}
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{\textit{soft}}(\Delta E, \lambda) + \sigma_{\textit{hc}}(\Delta E, \Delta \theta) + \sigma_{2 \rightarrow 3}(\Delta E, \Delta \theta)$

• higher order initial state radiation: $\sigma_{ISR} - \sigma_{ISR}^{O(\alpha)}(Q)$ λ : photon mass , ΔE : soft cut , $\Delta \theta$: collinear angle

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

• σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

• emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

• higher order initial state radiation: $\sigma_{ISR} - \sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$

Tania Robens NLO simulations of chargino production at the ILC

$\sigma_{\it corr}$ contributions and dependencies:

• σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

• emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{hc}(\Delta E, \Delta \theta) + \sigma_{2 \to 3}(\Delta E, \Delta \theta)$

• higher order initial state radiation: $\sigma_{ISR} - \sigma_{ISR}^{O(\alpha)}(Q)$ λ : photon mass , ΔE : soft cut , $\Delta \theta$: collinear angle

Tania Robens NLO simulations of chargino production at the ILC

\bullet experimental/ fitting routines errors on the $\%\,/\%$ level

- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 ightarrow 2(/3) process
- experiments: see final decay products
- e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu_\tau} \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$
- need to compare with simulated event samples
- also: important irreducible background effects (→ talk W. Kilian)

(also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

글 시 글 시 글

= 900

- \bullet experimental/ fitting routines errors on the $\%\,/\%_{0}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 ightarrow 2(/3) process
- experiments: see final decay products
- e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu_\tau} \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$
- need to compare with simulated event samples
- also: important irreducible background effects (→ talk W. Kilian)

(also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

3 K K 3 K 3

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \ \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 ightarrow 2(/3) process
- experiments: see final decay products
- e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu_\tau} \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$
- need to compare with simulated event samples
- also: important irreducible background effects (→ talk W. Kilian)

(also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \ \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for $\sigma_{\it corr}$ for 2 ightarrow 2(/3) process
- experiments: see final decay products
 - e.g. $e^+ e^- \rightarrow \widetilde{\chi}^+_1 \widetilde{\chi}^-_1 \rightarrow \widetilde{\tau}^+_1 \widetilde{\tau}^-_1 \nu_\tau \, \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1 \right)$
- need to compare with simulated event samples
- also: important irreducible background effects
 (→ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for $\sigma_{\it corr}$ for 2 ightarrow 2(/3) process
- experiments: see final decay products
 - e.g. $e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \, \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0 \right)$
- need to compare with simulated event samples
- also: important irreducible background effects (→ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 \rightarrow 2(/3) process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \, (\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0)$

need to compare with simulated event samples

• also: important irreducible background effects (\rightarrow talk W. Kilian)

 $\Rightarrow \text{ first step: include production process at NLO} \Leftrightarrow$ (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

- \bullet experimental/ fitting routines errors on the $\%\,/\%_0$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 \rightarrow 2(/3) process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \, (\rightarrow \tau^+ \, \tau^- \, \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0)$

- need to compare with simulated event samples
- also: important irreducible background effects (\rightarrow talk W. Kilian)

⇒ first step: include production process at NLO ← (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 \rightarrow 2(/3) process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \, (\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0)$

- need to compare with simulated event samples
- also: important irreducible background effects
 (→ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 ightarrow 2(/3) process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \widetilde{\chi}^+_1 \widetilde{\chi}^-_1 \rightarrow \widetilde{\tau}^+_1 \widetilde{\tau}^-_1 \nu_\tau \, \bar{\nu_\tau} \, (\rightarrow \tau^+ \tau^- \, \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1)$

- need to compare with simulated event samples
- also: important irreducible background effects
 - $(\rightarrow talk W. Kilian)$

 \Rightarrow first step: include production process at NLO \Leftarrow

(also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results:	Summary and Outlook
	000			
NLO results f	for $\sigma_{ee \rightarrow \widetilde{Y} \widetilde{Y}}$			

- \bullet experimental/ fitting routines errors on the $\%\,/\%$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for 2 ightarrow 2(/3) process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \widetilde{\chi}^+_1 \widetilde{\chi}^-_1 \rightarrow \widetilde{\tau}^+_1 \widetilde{\tau}^-_1 \nu_\tau \, \bar{\nu_\tau} \, (\rightarrow \tau^+ \tau^- \, \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1)$

- need to compare with simulated event samples
- also: important irreducible background effects

 $(\rightarrow \mathsf{talk} \mathsf{ W}. \mathsf{ Kilian})$

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...)

Tania Robens NLO simulations of chargino production at the ILC

- Fritzsche et al: use FeynArts/ FormCalc to obtain $\mathcal{M}_{born}, \mathcal{M}_{virt}(\lambda), f_s(\Delta E, \lambda)$
- inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{eff}^{W}|^{2}(\Delta E) = (1 + f_{s}(\Delta E)) |\mathcal{M}_{born}|^{2} + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^{*})$
- in practise: create Whizard library from modified FormCalc code

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

- Fritzsche et al: use FeynArts/ FormCalc to obtain $\mathcal{M}_{born}, \mathcal{M}_{virt}(\lambda), f_s(\Delta E, \lambda)$
- inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{eff}^{W}|^{2}(\Delta E) = (1 + f_{s}(\Delta E)) |\mathcal{M}_{born}|^{2} + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^{*})$
- in practise: create Whizard library from modified FormCalc code

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

- Fritzsche et al: use FeynArts/ FormCalc to obtain $\mathcal{M}_{born}, \mathcal{M}_{virt}(\lambda), f_s(\Delta E, \lambda)$
- inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{eff}^{W}|^{2}(\Delta E) = (1 + f_{s}(\Delta E)) |\mathcal{M}_{born}|^{2} + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^{*})$
- in practise: create Whizard library from modified FormCalc code

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

- Fritzsche et al: use FeynArts/ FormCalc to obtain $\mathcal{M}_{horn}, \mathcal{M}_{virt}(\lambda), f_s(\Delta E, \lambda)$
- inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{eff}^{W}|^{2}(\Delta E) = (1 + f_{s}(\Delta E)) |\mathcal{M}_{born}|^{2} + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^{*})$
- in practise: create Whizard library from modified FormCalc code

> < = > < = > = = = • • • • •

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook
Real photon	contributions			

integrate

 $|\mathcal{M}_{eff}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \, \mathcal{M}_{virt}^*)$

• + hard collinear photons: collinear approximation ($\mathcal{M}_{\textit{born}}$)

• + hard non-collinear photons: explicit $e e \to \widetilde{\chi} \, \widetilde{\chi} \, \gamma$ process $(\mathcal{M}^{2 \to 3}_{born})$

Drawback: $|\mathcal{M}_{eff}|^2 < 0$ for small values of $\frac{\Delta E}{\sqrt{s}}$; set $|\mathcal{M}_{eff}|^2 = 0$

too low energy cuts: $\mathcal{O}(\alpha)$ not sufficient, eads to "wrong" σ_{cor}

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

●▶ ▲ ■▶ = ■ ■ ● ● ●

integrate

 $|\mathcal{M}_{eff}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^*)$

 \bullet + hard collinear photons: collinear approximation ($\mathcal{M}_{\textit{born}})$

• + hard non-collinear photons: explicit $e e \to \widetilde{\chi} \, \widetilde{\chi} \, \gamma$ process $(\mathcal{M}^{2 \to 3}_{born})$

 $\begin{array}{ll} {\sf Drawback:} & |{\cal M}_{eff}|^2 & < \\ 0 \ \mbox{for small values of} \\ \frac{\Delta E}{\sqrt{s}}; \ \mbox{set} & |{\cal M}_{eff}|^2 & = 0 \end{array}$

too low energy cuts: $\mathcal{O}(\alpha)$ not sufficient, eads to "wrong" σ_{cor}

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motiv	ation	NLO corrections in	Whizard	irst resu	Summary	and Outloo	
Real photon	contributions				 			

integrate

 $|\mathcal{M}_{eff}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \, \mathcal{M}_{virt}^*)$

- \bullet + hard collinear photons: collinear approximation ($\mathcal{M}_{\textit{born}})$
- + hard non-collinear photons: explicit $e e \to \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}^{2 \to 3}_{born})$

Drawback: $|\mathcal{M}_{eff}|^2 < 0$ for small values of $\frac{\Delta E}{\sqrt{s}}$; set $|\mathcal{M}_{eff}|^2 = 0$

too low energy cuts: $\mathcal{O}(\alpha)$ not sufficient, eads to "wrong" σ_{cor}

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

⇒ ↓ ≡ ↓ ≡ ⊨ ↓ € ↓

integrate

$$|\mathcal{M}_{eff}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}^*_{virt})$$

- + hard collinear photons: collinear approximation (\mathcal{M}_{born})
- + hard non-collinear photons: explicit $e e \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{horn}^{2 \rightarrow 3})$

ECFA ILC Workshop 2005, Vienna

integrate

$$|\mathcal{M}_{eff}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}^*_{virt})$$

- + hard collinear photons: collinear approximation (\mathcal{M}_{born})
- + hard non-collinear photons: explicit $e \ e \to \widetilde{\chi} \ \widetilde{\chi} \ \gamma$ process $(\mathcal{M}^{2\to 3}_{born})$

$$\begin{aligned} |\mathcal{M}_{eff}|^2 &= (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \, \mathcal{M}_{virt}^*) \\ &- f_s^{ISR, \mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{born}|^2 \end{aligned}$$

• fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)

 all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region) |*M_{eff}*|² w∕ wo subtraction

< = > < = > = = < < < <

Tania Robens NLO simulations of chargino production at the ILC

$$\begin{split} |\mathcal{M}_{eff}|^2 &= (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{\textit{Re}}(\mathcal{M}_{born} \, \mathcal{M}^*_{virt}) \\ &- f_s^{\mathit{ISR},\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{born}|^2 \end{split}$$

- fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region) $|\mathcal{M}_{eff}|^2$ w/wo subtraction

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Tania Robens NLO simulations of chargino production at the ILC ECF

$$\begin{split} |\mathcal{M}_{eff}|^2 &= (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{\textit{Re}}(\mathcal{M}_{born} \, \mathcal{M}^*_{virt}) \\ &- f_s^{\mathit{ISR},\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{born}|^2 \end{split}$$

- fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region) $|\mathcal{M}_{eff}|^2$ w/ wo subtraction

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ④ ● ●

Tania Robens NLO simulations of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

$$\begin{aligned} |\mathcal{M}_{eff}|^2 &= (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \, \mathcal{M}_{virt}^*) \\ &- f_s^{ISR, \mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{born}|^2 \end{aligned}$$

- fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as

$$\begin{aligned} |\mathcal{M}_{eff}|^2 &= (1 + f_s(\Delta E)) |\mathcal{M}_{born}|^2 + 2 \operatorname{Re}(\mathcal{M}_{born} \mathcal{M}_{virt}^*) \\ &- f_s^{ISR, \mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{born}|^2 \end{aligned}$$

- fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook
Photon app	roximations: validity regions			
σ_{corr}	cut dependencies	s: ΔE		

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

 \Rightarrow more accurate description of soft photon region

Tania Robens NLO simulations of chargino production at the ILC

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

 \Rightarrow more accurate description of soft photon region

Tania Robens NLO simulations of chargino production at the ILC

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook
Photon app	proximations: validity regions			
σ_{corr}	cut dependencies	s: $\Delta \theta$		

 \checkmark literature limits: $0.05^{\circ} \leq \Delta \theta \leq 0.5^{\circ}$

 σ_{corr} again larger for subtraction method for higher angles: second order ISR effects ($\mathcal{O}(\%)$)

Tania Robens NLO simulations of chargino production at the ILC

Tania Robens NLO simulations of chargino production at the ILC

Tania Robens NLO simulations of chargino production at the ILC

Tania Robens NLO simulations of chargino production at the ILC

Tania Robens NLO simulations of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

Tania Robens NLO simulations of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: ○●○	Summary and Outlook
angular distri	ibutions			
simula	ation results: an	gular distribution	าร	

$\theta_{\textit{abs}}:$ angle between $\widetilde{\chi}^-$ and e^+

!! more than 1 σ deviation !! (nbins = 20)

Tania Robens NLO simulations of chargino production at the ILC

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 三国 → つへぐ ECFA ILC Workshop 2005, Vienna

simulation results: angular distributions

$$heta_{\it abs}$$
: angle between $\widetilde{\chi}^-$ and e^+

angular distribution

angular distribution: NLO effects (born - corrected)

!! more than 1 σ deviation !! (nbins = 20)

< □ > < 同 >

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

simulation results: angular distributions

angular distribution: NLO effects (born - corrected)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q Q ECFA ILC Workshop 2005, Vienna

(nbins = 20)

exact-1-1 resum

Tania Robens NLO simulations of chargino production at the ILC

Reminder: $|\mathcal{M}_{eff}|^2$ behaviour $(\Delta E_{low} = 0.5 \text{ GeV})$:

angular distribution:

Tania Robens NLO simulations of chargino production at the ILC

Angular distribution: Do we see $|\mathcal{M}|^2 < 0$ effects ?? (\checkmark)

Reminder: $|\mathcal{M}_{eff}|^2$ behaviour $(\Delta E_{low} = 0.5 \text{ GeV})$:

angular distribution:

Tania Robens NLO simulations of chargino production at the ILC

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

シック 日月 ・日下 うくや

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

∃ ► ▲ ∃ ► ▲ ∃ = ● ○ ○ ○

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

∃ ► ▲ ∃ ► ▲ ∃ = ● ○ ○ ○

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

▲ ∃ ► ▲ ∃ = 𝔄 𝒫

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributionsinterface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

▲ ∃ ► ▲ ∃ = 𝔄 𝒫

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	nary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

▲ Ξ ► Ξ Ξ < < ○</p>

Outline	Introduction and Motivation	NLO corrections in Whizard	First results: 000	Summary and Outlook ●○
Summary				
Summ	hary			

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- first step: include NLO contributions of $\widetilde{\chi}\,\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- first results: significant differences in angular distributions
- interface between Whizard and FormCalc

ECFA ILC Workshop 2005, Vienna

▲ Ξ ► Ξ Ξ < < ○</p>

$\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays

- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

THANKS TO

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

☺YOU for listening ☺

Tania Robens NLO simulations of chargino production at the ILC

- $\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays
- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

☺YOU for listening ☺

Tania Robens NLO simulations of chargino production at the ILC

- $\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays
- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

☺YOU for listening ☺

Tania Robens NLO simulations of chargino production at the ILC

- $\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays
- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

☺YOU for listening ☺

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

- $\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays
- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

©YOU for listening ☺

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

- $\bullet\,$ next step: include NLO corrections to $\widetilde{\chi}$ decays
- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $\ensuremath{\textcircled{}}$ YOU for listening $\ensuremath{\textcircled{}}$

Tania Robens NLO simulations of chargino production at the ILC

ECFA ILC Workshop 2005, Vienna

▲冊 ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = の Q ()

Appendix ●00

ISR and photon approximations

ISR in its full beauty (Skrzypek et al, 1990)

$$\begin{split} \Gamma_{ee}^{LL}(x,Q^2) &= \frac{\exp(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta)}{\Gamma(1+\frac{\eta}{2})} \frac{\eta}{2}(1-x)^{(\frac{\eta}{2}-1)} \\ &- \frac{\eta}{4}(1+x) + \frac{\eta^2}{16} \left(-2(1-x)\log(1-x) - \frac{2\log x}{1-x} + \frac{3}{2}(1+x)\log x\right) \\ &- \frac{x}{2} - \frac{5}{2}\right) + \left(\frac{\eta}{2}\right)^3 \left[-\frac{1}{2}(1+x)\left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4}\log(1-x)\right) \\ &+ \frac{1}{2}\log^2(1-x) - \frac{1}{4}\log x\log(1-x) + \frac{1}{16}\log^2 x - \frac{1}{4}\text{Li}_2(1-x)\right) \\ &+ \frac{1}{2}\frac{1+x^2}{1-x}\left(-\frac{3}{8}\log x + \frac{1}{12}\log^2 x - \frac{1}{2}\log x\log(1-x)\right) \\ &- \frac{1}{4}(1-x)\left(\log(10x) + \frac{1}{4}\right) + \frac{1}{32}(5-3x)\log x\right] \end{split}$$

Tania Robens NLO simulations of chargino production at the ILC

Appendix 000

ISR and photon approximations

η , f_s , hard collinear approximation, $ISR^{\mathcal{O}(\alpha)}$

•
$$\eta = \frac{2\alpha}{\pi} \left(\log \left(\frac{Q^2}{m_e^2} \right) - 1 \right) \quad (Q = \text{scale of process})$$

• $f_{soft}^{2\gamma} = \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \le \Delta \mathbf{E}} \frac{d^3k}{2\omega_k} \frac{2p_i p_j}{p_i \, k \, p_j \, k},$
(Denner 1992)
 $\omega_k = \sqrt{\mathbf{k}^2 + \lambda^2}, \, p_i \text{ initial/ final state momenta, } k: \gamma$

momentum

• hard collinear factor (\pm helicity conserving/ flipping):

$$f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left(\ln\left(\frac{s(\Delta\theta)^2}{4m^2}\right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.$$
(Dittmaier 1993)

• $ISR^{\mathcal{O}(\alpha)}$.

$$f_{soft,ISR} = \left[\int_{x_0}^1 P^{ee}(x) \, dx\right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left(2\ln(1-x_0) + x_0 + \frac{1}{2}x_0^2\right)_{\mathcal{O}(\alpha)}$$

Tania Robens INLU SIMULATIONS OF CHARGING production at the ILC ECFA ILC VVOrksnop 2005, Vienna Appendix ○○●

soft region effects

$\sigma_{corr}(\sqrt{s})$: differences between exact and resummation method

Tania Robens NLO simulations of chargino production at the ILC