

NLO simulations of chargino production at the International Linear Collider

Tania Robens

DESY

ECFA ILC Workshop 2005, Vienna

Tania Robens NLO [simulations](#page-65-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

 $E|E|$ \bigcirc Q \bigcirc

1 [Introduction](#page-2-0) and Motivation

- **•** Chargino and [Neutralino](#page-2-0) sector in the MSSM
- NLO [results](#page-7-0) for $\sigma_{ee \rightarrow \tilde{\chi} \tilde{\chi}}$
- 2 NLO [corrections](#page-24-0) in Whizard
	- Virtual [corrections](#page-24-0)
	- Real photon [contributions](#page-28-0)
	- Photon [approximations:](#page-38-0) validity regions

First [results:](#page-46-0)

- \bullet σ_{tot} σ_{tot} σ_{tot}
- **•** angular [distributions](#page-48-0)

4 [Summary](#page-53-0) and Outlook

• can be reconstructed from (Choi et al 1998, 2000,2001)

masses of $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm}, \widetilde{\chi}_1^0$ 2 σ in the $\widetilde{\chi}^{\pm}$ sector

 \Rightarrow reconstruction of SUSY breaking scale parameters $+$ mechanism

(Blair et al 2002)

 \bullet "experimental" and parameter fitting accuracy: $\%$ to $\%$ ⇒ LHC/ILC study group; SFitter/ Fittino [⇐](#page-1-0)
موجع دی جه د هم د ده د

- **Supersymmetric theories: New SUSY (breaking) parameters** appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

- can be reconstructed from (Choi et al 1998, 2000,2001) masses of $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm}, \widetilde{\chi}_1^0$ 2 σ in the $\widetilde{\chi}^{\pm}$ sector
- \Rightarrow reconstruction of SUSY breaking scale parameters $+$ mechanism

(Blair et al 2002)

 \bullet "experimental" and parameter fitting accuracy: $\%$ to $\%$ ⇒ LHC/ILC study group; SFitter/ Fittino [⇐](#page-1-0)
موجع دی جه د هم د ده د

- **Supersymmetric theories: New SUSY (breaking) parameters**
	- appear in the superpotential and the soft breaking terms
	- Gaugino and higgsino sector of the MSSM:

- can be reconstructed from (Choi et al 1998, 2000,2001) masses of $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm}, \widetilde{\chi}_1^0$
	- 2 σ in the $\widetilde{\chi}^{\pm}$ sector
- \Rightarrow reconstruction of SUSY breaking scale parameters $+$ mechanism

(Blair et al 2002)

 \bullet "experimental" and parameter fitting accuracy: $\%$ to $\%$ ⇒ LHC/ILC study group; SFitter/ Fittino [⇐](#page-1-0)
موجع دی جه د هم د ده د

Chargino and Neutralino sector in the MSSM

- **Supersymmetric theories: New SUSY (breaking) parameters** appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

tan β , μ (Higgs sector) M_1 , M_2 (soft breaking terms)

• can be reconstructed from (Choi et al 1998, 2000,2001)

masses of $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm}, \widetilde{\chi}_1^0$ 2 σ in the $\widetilde{\chi}^{\pm}$ sector

 \Rightarrow reconstruction of SUSY breaking scale parameters $+$ mechanism

(Blair et al 2002)

 \bullet "experimental" and parameter fitting accuracy: $\%$ to $\%$ ⇒ LHC/ILC study group; SFitter/ Fittino [⇐](#page-1-0)
موجع دی جه د هم د ده د

- **Supersymmetric theories: New SUSY (breaking) parameters** appear in the superpotential and the soft breaking terms
- Gaugino and higgsino sector of the MSSM:

• can be reconstructed from (Choi et al 1998, 2000,2001)

masses of $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm}, \widetilde{\chi}_1^0$ 2 σ in the $\widetilde{\chi}^{\pm}$ sector

 \Rightarrow reconstruction of SUSY breaking scale parameters $+$ mechanism

(Blair et al 2002)

 \bullet "experimental" and parameter fitting accuracy: $\%$ to $\%$ ⇒ LHC/ILC study group; SFitter/ Fittino [⇐](#page-1-0)
محمد حقیقی دی دی د کار دی د د کار د کا

 σ_{corr} contributions and dependencies:

-
-

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

σ_{corr} contributions and dependencies:

 \bullet σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

• emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2 \rightarrow 3}(\Delta E, \Delta \theta)$

higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$

λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

σ_{corr} contributions and dependencies:

\bullet σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

• emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2 \rightarrow 3}(\Delta E, \Delta \theta)$

higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$

λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

σ_{corr} contributions and dependencies:

- \bullet σ_{born}
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2 \rightarrow 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$
	- λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

σ_{corr} contributions and dependencies:

- \bullet σ_{born}
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2\rightarrow 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$
	- λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

K ロ > K @ > K 할 > K 할 > [할 = K) Q @

σ_{corr} contributions and dependencies:

- \bullet σ_{born}
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$
- emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2\rightarrow 3}(\Delta E, \Delta \theta)$

higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$

λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

σ_{corr} contributions and dependencies:

 \bullet σ_{born}

• virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{virt}(\lambda)$

emission of 1 soft/ hard collinear/ hard non-collinear photon:

 $\sigma_{soft}(\Delta E, \lambda) + \sigma_{bc}(\Delta E, \Delta \theta) + \sigma_{2\rightarrow 3}(\Delta E, \Delta \theta)$

- higher order initial state radiation: $\sigma_{ISR}-\sigma_{ISR}^{\mathcal{O}(\alpha)}(Q)$
	- λ: photon mass, ΔE : soft cut, $\Delta \theta$: collinear angle

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

• experimental/ fitting routines errors on the $\frac{9}{10}$ / $\frac{9}{100}$ level

- **•** loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

-
-
-
-
-

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

KERKER EE ORG

- experimental/ fitting routines errors on the $\frac{9}{10}$ / $\frac{9}{100}$ level
- loop corrections of equal size

 \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

-
-
-
-
-

- experimental/ fitting routines errors on the $\frac{9}{10}$ / $\frac{9}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

-
-
-
-
-

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2/3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \bar{\nu}_\tau \ (\rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu}_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0)$

- **•** need to compare with simulated event samples
- also: important irreducible background effects
	- $(\rightarrow$ talk W. Kilian)

(also: angular distributions, ...) K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ - ヨ ヨ - 9 Q O

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products
	- e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \bar{\nu}_\tau \ (\rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu}_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0)$
- **•** need to compare with simulated event samples
- also: important irreducible background effects
	- $(\rightarrow$ talk W. Kilian)

(also: angular distributions, ...) K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ - ヨ ヨ - 9 Q O

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \nu_\tau \left(\rightarrow \tau^+ \tau^- \nu_\tau \nu_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$

• need to compare with simulated event samples

• also: important irreducible background effects

 $(\rightarrow$ talk W. Kilian)

(also: angular distributions, ...) **A EXA EXA ELEMA Q O**

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \nu_\tau \left(\rightarrow \tau^+ \tau^- \nu_\tau \nu_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$

- o need to compare with simulated event samples
- also: important irreducible background effects $(\rightarrow$ talk W. Kilian)

(also: angular distributions, ...) K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리고 K 9 Q @

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{10}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \nu_\tau \left(\rightarrow \tau^+ \tau^- \nu_\tau \nu_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$

- o need to compare with simulated event samples
- also: important irreducible background effects
	- $(\rightarrow$ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...) K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리고 K 9 Q @

- experimental/ fitting routines errors on the $\frac{9}{10}$ / $\frac{9}{100}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \nu_\tau \left(\rightarrow \tau^+ \tau^- \nu_\tau \nu_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$

- o need to compare with simulated event samples
- also: important irreducible background effects
	- $(\rightarrow$ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow

(also: angular distributions, ...)

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리고 K 9 Q @

- experimental/ fitting routines errors on the $\frac{6}{10}$ / $\frac{6}{10}$ level
- loop corrections of equal size
- \Rightarrow need to include NLO results in Monte Carlo Generators \Leftarrow

?? WHY ??

- so far: analytic results for σ_{corr} for $2 \rightarrow 2//3$ process
- experiments: see final decay products

e.g. $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \nu_\tau \nu_\tau \left(\rightarrow \tau^+ \tau^- \nu_\tau \nu_\tau \tilde{\chi}_1^0 \tilde{\chi}_1^0 \right)$

- o need to compare with simulated event samples
- also: important irreducible background effects
	- $(\rightarrow$ talk W. Kilian)

 \Rightarrow first step: include production process at NLO \Leftarrow (also: angular distributions, ...) K ロ > K @ > K 할 > K 할 > [할 = K) Q @

- Fritzsche et al: use FeynArts/ FormCalc to obtain \mathcal{M}_{born} , $\mathcal{M}_{virt}(\lambda)$, $f_{s}(\Delta E, \lambda)$
- **•** inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{\text{eff}}^W|^2(\Delta E) = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 Re(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)$
- **•** in practise: create Whizard library from modified FormCalc code

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

KERKER EE ORG

- **•** Fritzsche et al: use FeynArts/ FormCalc to obtain \mathcal{M}_{born} , $\mathcal{M}_{virt}(\lambda)$, $f_{s}(\Delta E, \lambda)$
- **•** inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{\text{eff}}^W|^2(\Delta E) = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 Re(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)$
- **•** in practise: create Whizard library from modified FormCalc code

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

∢ 트 ▶ ४ 트 ▶ - 트 트 - 이익⊙

- Fritzsche et al: use FeynArts/ FormCalc to obtain \mathcal{M}_{born} , $\mathcal{M}_{virt}(\lambda)$, $f_s(\Delta E, \lambda)$
- **•** inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{\textit{eff}}^{\textit{W}}|^2(\Delta E) = (1 + f_{\textit{s}}(\Delta E)) |\mathcal{M}_{\textit{born}}|^2 + 2 \textit{Re}(\mathcal{M}_{\textit{born}} \mathcal{M}_{\textit{virt}}^{*})$
- **•** in practise: create Whizard library from modified FormCalc code

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

KERKER EE ORG

- **•** Fritzsche et al: use FeynArts/ FormCalc to obtain $\mathcal{M}_{\text{horn}}$, $\mathcal{M}_{\text{virt}}(\lambda)$, $f_{\text{s}}(\Delta E, \lambda)$
- **•** inclusion of first order virtual corrections in Whizard: use $|\mathcal{M}_{\textit{eff}}^{\textit{W}}|^2(\Delta E) = (1 + f_{\textit{s}}(\Delta E)) |\mathcal{M}_{\textit{born}}|^2 + 2 \textit{Re}(\mathcal{M}_{\textit{born}} \mathcal{M}_{\textit{virt}}^{*})$
- in practise: create Whizard library from modified FormCalc code

A EXA EX ELEMAÇO

• integrate

 $|\mathcal{M}_{\mathsf{eff}}|^2 = (1 + f_{\mathsf{s}}(\Delta E)) |\mathcal{M}_{\mathsf{born}}|^2 + 2 \mathsf{Re}(\mathcal{M}_{\mathsf{born}} \mathcal{M}_{\mathsf{virt}}^*)$

 \bullet + hard collinear photons: collinear approximation (\mathcal{M}_{born})

 \bullet + hard non-collinear photons: explicit $ee \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{born}^{2\rightarrow 3})$

Drawback: $|\mathcal{M}_{\text{eff}}|^2 <$ 0 for small values of $\frac{\Delta E}{\sqrt{g}}$ $\frac{E}{s}$; set $|\mathcal{M}_{\text{eff}}|^2 = 0$

• integrate

 $|\mathcal{M}_{\mathsf{eff}}|^2 = (1 + f_{\mathsf{s}}(\Delta E)) |\mathcal{M}_{\mathsf{born}}|^2 + 2 \mathsf{Re}(\mathcal{M}_{\mathsf{born}} \mathcal{M}_{\mathsf{virt}}^*)$

 \bullet + hard collinear photons: collinear approximation (\mathcal{M}_{born})

 \bullet + hard non-collinear photons: explicit $ee \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{born}^{2\rightarrow 3})$

Drawback: $|\mathcal{M}_{\text{eff}}|^2 <$ 0 for small values of $\frac{\Delta E}{\sqrt{g}}$ $\frac{E}{s}$; set $|\mathcal{M}_{\text{eff}}|^2 = 0$

• integrate

 $|\mathcal{M}_{\mathsf{eff}}|^2 = (1 + f_{\mathsf{s}}(\Delta E)) |\mathcal{M}_{\mathsf{born}}|^2 + 2 \mathsf{Re}(\mathcal{M}_{\mathsf{born}} \mathcal{M}_{\mathsf{virt}}^*)$

- \bullet + hard collinear photons: collinear approximation (\mathcal{M}_{born})
- \bullet + hard non-collinear photons: explicit $ee \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{born}^{2\rightarrow 3})$

Drawback: $|\mathcal{M}_{\text{eff}}|^2 <$ 0 for small values of $\frac{\Delta E}{\sqrt{g}}$ $\frac{E}{s}$; set $|\mathcal{M}_{\text{eff}}|^2 = 0$

• integrate

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

- \bullet + hard collinear photons: collinear approximation (\mathcal{M}_{born})
- \bullet + hard non-collinear photons: explicit $ee \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{born}^{2\rightarrow 3})$

 OQ

• integrate

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

- \bullet + hard collinear photons: collinear approximation (\mathcal{M}_{born})
- \bullet + hard non-collinear photons: explicit $ee \rightarrow \tilde{\chi} \tilde{\chi} \gamma$ process $(\mathcal{M}_{born}^{2\rightarrow 3})$

 OQ

integrate over ΔE independent $|\mathcal{M}_\mathit{eff}|^2$:

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

-
$$
f_s^{\text{ISR,}\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{\text{born}}|^2
$$

• fold this with ISR structure function (!! $\mathcal{M}_{born} + \mathcal{M}_{virt}$!!)

• all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region)

 $|\mathcal{M}_{\textrm{eff}}|^2$ w/ wo subtraction

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

integrate over ΔE independent $|\mathcal{M}_\mathit{eff}|^2$:

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

-
$$
f_s^{\text{ISR,}\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{\text{born}}|^2
$$

- fold this with ISR structure function (!! $M_{born} + M_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region)

 $|\mathcal{M}_{\textrm{eff}}|^2$ w/ wo subtraction

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

integrate over ΔE independent $|\mathcal{M}_\mathit{eff}|^2$:

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

-
$$
f_s^{\text{ISR,}\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{\text{born}}|^2
$$

- fold this with ISR structure function (!! $M_{born} + M_{virt}$!!)
- all collinear photons described by ISR, hard non collinear: as before

more accurate description of $\sigma(x s)$ for $x \approx 1$ (soft region)

 $|\mathcal{M}_{\textrm{eff}}|^2$ w/ wo subtraction

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

integrate over ΔE independent $|\mathcal{M}_\textit{eff}|^2$:

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

-
$$
f_s^{\text{ISR,}\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{\text{born}}|^2
$$

- fold this with ISR structure function (!! $M_{born} + M_{virt}$!!)
- • all collinear photons described by ISR, hard non collinear: as

integrate over ΔE independent $|\mathcal{M}_\textit{eff}|^2$:

$$
|\mathcal{M}_{\text{eff}}|^2 = (1 + f_s(\Delta E)) |\mathcal{M}_{\text{born}}|^2 + 2 \text{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*)
$$

-
$$
f_s^{\text{ISR,}\mathcal{O}(\alpha)}(\Delta E) |\mathcal{M}_{\text{born}}|^2
$$

- fold this with ISR structure function (!! $M_{born} + M_{virt}$!!)
- • all collinear photons described by ISR, hard non collinear: as before Different contributions to M^2 for hel=+-+-, Delta E = 0.5 GeV, resumm method

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects √ literature* limits:
1075 - AE - 1072 $10^{-5} \leq \frac{\Delta E}{\sqrt{s}}$ $\frac{E}{s} \le 10^{-2}$ $\sqrt{}$ negative $|\mathcal{M}|^2$ effects for low cuts [∗]Oller(2005), ¨ Denner(2000) subtraction method: σ_{corr} slightly larger

 \Rightarrow more accurate description of soft photon region

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

X X E X X E X E E YOUR

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

 \Rightarrow more accurate description of soft photon region

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

 \Rightarrow more accurate description of soft photon region

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

tests: soft photon approximation, negative $|\mathcal{M}|^2$ effects

 $\sqrt{}$ literature limits: $0.05^{\circ} \leq \Delta\theta \leq 0.5^{\circ}$

 σ_{corr} again larger for subtraction method for higher angles: second order ISR effects $(\mathcal{O}(\%))$

$\theta_{\textit{abs}}$: angle between $\widetilde{\chi}^-$ and e^+

!! more than 1 σ deviation !! $(nbins = 20)$

simulation results: angular distributions

angular distribution: NLO effects (born - corrected)

II more than 1 σ deviation II $(nbins = 20)$

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

simulation results: angular distributions

angular distribution: NLO effects (born - corrected)

II more than 1σ deviation II $(nbins = 20)$

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

Angular distribution: Do we see $|\mathcal{M}|^2 < 0$ effects ?? ($\sqrt{}$)

Reminder: $|{\cal M}_{\sf eff}|^2$ behaviour $(\Delta E_{low} = 0.5$ GeV):

angular distribution:

Angular distribution: Do we see $|\mathcal{M}|^2 < 0$ effects ?? ($\sqrt{}$)

Reminder: $|{\cal M}_{\sf eff}|^2$ behaviour $(\Delta E_{low} = 0.5$ GeV):

angular distribution:

 $\int \mathcal{L} = 1000.$ fb⁻¹

 $\sqrt{s} = 1000. \; \mathrm{GeV}$

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi} \widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- \bullet interface between Whizard and FormCalc

 $A \equiv A$ $B \equiv A$

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi} \widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- \bullet interface between Whizard and FormCalc

ৰ ≣ ► ⊞|≣ ৩,৭,৫

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi}$ $\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- \bullet interface between Whizard and FormCalc

-∢ 로 ▶ - 로 로 - 이익企

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi}$ $\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- \bullet interface between Whizard and FormCalc

KEN EE MAQ

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi}$ $\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions \bullet interface between Whizard and FormCalc

 E^* and E^* E^*

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- **•** first step: include NLO contributions of $\widetilde{\chi}$ $\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- **interface between Whizard and FormCalc**

 E^* and E^* E^*

- Chargino/ neutralino sector: high precision in SUSY paramater analysis at EW scale
- NLO corrections for production: $\mathcal{O}(\%)$
- inclusion in analyses/ Monte Carlo generators necessary
- \bullet first step: include NLO contributions of $\widetilde{\chi}$ $\widetilde{\chi}$ production at ILC in Whizard
- use "classical" as well as new approach to include real photon contributions: lower energy cuts, better description in soft regime
- **•** first results: significant differences in angular distributions
- **•** interface between Whizard and FormCalc

 E^* and E^* E^*

• next step: include NLO corrections to $\widetilde{\chi}$ decays

- next² step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- \bullet Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

THANKS TO

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $OVOU$ for listening O

- next step: include NLO corrections to $\widetilde{\chi}$ decays
- $next^2$ step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- \bullet Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $OVOU$ for listening O

- next step: include NLO corrections to $\widetilde{\chi}$ decays
- $next^2$ step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected $2 \rightarrow 4$ process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $OVOU$ for listening O

- next step: include NLO corrections to $\widetilde{\chi}$ decays
- $next^2$ step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected $2 \rightarrow 4$ process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $OVOU$ for listening O

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

X X E X X E X E E YOUR

- next step: include NLO corrections to $\widetilde{\chi}$ decays
- $next^2$ step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- \bullet Goal: include "fully" corrected 2 \rightarrow 4 process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 $OVOU$ for listening O

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

A EXA EXA ELEMA Q O

- next step: include NLO corrections to $\widetilde{\chi}$ decays
- $next^2$ step: take non-factorizing contributions into account start with photonic corrections in the double-pole approximation
- Goal: include "fully" corrected $2 \rightarrow 4$ process
- extendable to other processes...

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 \circ YOU for listening \circ

ISR and photon approximations

[Appendix](#page-66-0)
 \bullet

ISR in its full beauty (Skrzypek et al, 1990)

$$
\Gamma_{ee}^{LL}(x, Q^2) = \frac{\exp(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta)}{\Gamma(1 + \frac{\eta}{2})} \frac{\eta}{2} (1 - x)^{(\frac{\eta}{2} - 1)}
$$

\n
$$
- \frac{\eta}{4} (1 + x) + \frac{\eta^2}{16} \left(-2(1 - x) \log(1 - x) - \frac{2 \log x}{1 - x} + \frac{3}{2} (1 + x) \log x \right.
$$

\n
$$
- \frac{x}{2} - \frac{5}{2} \right) + \left(\frac{\eta}{2} \right)^3 \left[-\frac{1}{2} (1 + x) \left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4} \log(1 - x) \right.\right.
$$

\n
$$
+ \frac{1}{2} \log^2(1 - x) - \frac{1}{4} \log x \log(1 - x) + \frac{1}{16} \log^2 x - \frac{1}{4} \text{Li}_2(1 - x) \right)
$$

\n
$$
+ \frac{1}{2} \frac{1 + x^2}{1 - x} \left(-\frac{3}{8} \log x + \frac{1}{12} \log^2 x - \frac{1}{2} \log x \log(1 - x) \right)
$$

\n
$$
- \frac{1}{4} (1 - x) \left(\log(10x) + \frac{1}{4} \right) + \frac{1}{32} (5 - 3x) \log x \right]
$$

[Appendix](#page-66-0)
ooo

ISR and photon approximations

η , $f_{\sf s}$, hard collinear approximation, $\mathit{ISR}^{{\cal O}(\alpha)}$

$$
\begin{array}{ll}\n\bullet \ \eta = \frac{2\alpha}{\pi} \left(\log \left(\frac{Q^2}{m_e^2} \right) - 1 \right) & (Q = \text{scale of process}) \\
\bullet \qquad \qquad f_{\text{soft}}^2 = \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \leq \Delta E} \frac{d^3 k}{2\omega_k} \frac{2 \, p_i \, p_j}{p_i \, k \, p_j \, k}, \\
\omega_k = \sqrt{\mathbf{k}^2 + \lambda^2}, \ p_i \text{ initial/ final state momenta, } k: \ \gamma\n\end{array} \tag{Denner 1992}
$$

momentum

• hard collinear factor $(\pm$ helicity conserving/ flipping):

$$
f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left(\ln \left(\frac{s(\Delta\theta)^2}{4m^2} \right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.
$$
\n(Dittmaier 1993)

ISR $\mathcal{O}(\alpha)$:

$$
f_{\text{soft,ISR}} = \left[\int_{x_0}^1 P^{\text{ee}}(x) dx \right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left(2 \ln(1 - x_0) + x_0 + \frac{1}{2} x_0^2 \right)
$$

 \bigcirc

soft region effects

$\sigma_{corr}(\sqrt{s})$: differences between exact and resummation method

Tania Robens NLO [simulations](#page-0-0) of chargino production at the ILC ECFA ILC Workshop 2005, Vienna

 QQ