

CP Violation at the ILC: Production of Neutralinos and Charginos

Olaf Kittel, University of Bonn

in collaboration with: A. Bartl, H. Fraas, T. Kernreiter, W. Majerotto

ECFA – Vienna – November 2005

Motivation

What about CP violating phases at the linear collider (ILC) ?

- MSSM may have several phases: $\varphi_{\mu}, \varphi_{M_1}, \varphi_{A_{\tau}}, \dots$ (and many more)
- \bullet how to measure them? \rightarrow find sensitive observables and processes

Low-energy restrictions of the phases?

- measurements of electric dipole moments impose strong constraints.
- however: cancellations of loop contributions to EDMs, or other models (e.g. with flavor violation) may weaken constraints
- \rightarrow ILC could provide independent measurements of phases!

CP violation at the ILC: production of neutralinos and charginos

- Constructing CP observables: triple products
- Results for e^+e^- linear collider:
 - neutralino production
 - chargino production
- Summary and conclusions

Impact of complex parameters

- couplings become complex
- masses, cross sections, distributions, etc. change their value

Are there observables A which are $\operatorname{CP-sensitive} \Leftrightarrow \begin{array}{ll} A=0 & \text{if CP is conserved} \\ A\neq 0 & \text{if CP is violated} \end{array}$

How to construct them? \Rightarrow triple products

- time reversal $T(t \rightarrow -t)$: $T[\vec{a}, \vec{b}, \vec{c}] = -[\vec{a}, \vec{b}, \vec{c}] \Rightarrow T$ -odd CPT-theorem: T-odd observables are also CP-odd
- source: $\Im r \{\gamma_5 \not a \not b \not c \not d\} = 4 i \epsilon_{\mu\nu\rho\sigma} a^{\mu} b^{\nu} c^{\rho} d^{\sigma}$ interference with complex parameters

T odd asymmetry

$$A := \frac{\sigma(\mathbf{T} > 0) - \sigma(\mathbf{T} < 0)}{\sigma(\mathbf{T} > 0) + \sigma(\mathbf{T} < 0)}$$

- triple product: $\mathbf{T} = (\vec{p}_a \times \vec{p}_b) \cdot \vec{p}_c$
- cross section: σ

$$\Rightarrow A = \frac{\int Sign[\mathbf{T}] \ |T|^2 \, d\text{Lips}}{\int |T|^2 \, d\text{Lips}}$$

- Amplitude: $|T|^2$
- Lorentz-invariant phase space: Lips

Geometrical interpretation

• Asymmetry A is an angular distribution:

Remember: A is CP-sensitive \Rightarrow CP violation can be tested directly!

Asymmetry for neutralino production

$$A = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)}$$
$$\mathcal{T} = [\vec{p}(e^{-}) \times \vec{p}(\ell_1)] \cdot \vec{p}(\ell_2)$$

$$e^+e^- \longrightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0; \quad \tilde{\chi}_2^0 \longrightarrow \tilde{\ell}_R \,\ell_1; \quad \tilde{\ell}_R \longrightarrow \tilde{\chi}_1^0 \,\ell_2 \quad \text{at } \sqrt{s} = 500 \text{ GeV};$$
$$\tan \beta = 10; \quad m_0 = 100 \text{ GeV}; \quad P(e^-|e^+) = (0.8|-0.6)$$

dependence on the phases

A bit of statistics

- How many events $N = \mathcal{L} \times \sigma$ are needed to measure the CP-asymmetry A ?
- Statistical significance is given by: $S = A \sqrt{N}$
- An example: asymmetry of A = 5% and cross section $\sigma = 20$ fb would yield a CL of 5 (luminosity $\mathcal{L} = 500$ fb⁻¹).
- However, since A and σ vary a lot over the MSSM parameter space, it is difficult to make global statements, whether phases could be measured or not.

Distinguish the leptons by energy distributions $\frac{d \sigma}{d E}$

Transverse tau polarization as CP-asymmetry

 $A = P_{\perp} = \tau - \text{polarization} \perp \vec{p}(e^{-}), \vec{p}(\tau)$

triple product: $\mathcal{T} = [\vec{p}(e^{-}) \times \vec{p}(\tau)] \cdot \vec{P}_{\perp}$

Asymmetry for neutralino decay into Z

$$A = \frac{\sigma(\mathfrak{T} > 0) - \sigma(\mathfrak{T} < 0)}{\sigma(\mathfrak{T} > 0) + \sigma(\mathfrak{T} < 0)}; \quad \mathfrak{T} = [\vec{p}(e^{-}) \times \vec{p}(f)] \cdot \vec{p}(f')$$

- also CP contributions to A from decay $\tilde{\chi}^0_i \to \tilde{\chi}^0_1 Z$
- $A \propto \frac{|L|^2 |R|^2}{|L|^2 + |R|^2} = 0.15(0.94)$ for $Z \rightarrow \ell^+ \ell^- (b \ \overline{b})$ $\Rightarrow A \approx 3\%(18\%)$ for leptonic (hadronic) decays
- CP sensitive matrix elements of Z spin matrix

Asymmetry for chargino production

$$A = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)}$$

4

 $\mathcal{T} = [\vec{p}(e^{-}) \times \vec{p}(\tilde{\chi}_{i}^{+})] \cdot \vec{p}(\ell)$

Asymmetry for chargino decay into W

$$A = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)}; \quad \mathcal{T} = [\vec{p}(e^{-}) \times \vec{p}(c)] \cdot \vec{p}(\bar{s})$$
$$\varphi_{M_1}[\pi] \qquad A \text{ in } \%$$

Summary and conclusions

- There are new sources of CP violation in supersymmetric theories.
- Complex MSSM parameters (here phases of μ , M_1 , A_{τ}) have impact on the production and the decay of neutralinos and charginos.
- There are CP-sensitive observables: triple products lead to CP-asymmetries.
- The CP-violating effects are of the order of 10%.
 - \rightarrow phases can be constrained/measured at future collider (ILC).