Determination of NMSSM parameters by combined LHC/ILC analyses

Stefan Hesselbach High Energy Physics, Uppsala University

based on

G. Moortgat-Pick, S. Hesselbach, F. Franke, H. Fraas, JHEP 06 (2005) 048 [hep-ph/0502036]

ECFA ILC Workshop 2005, Vienna

November 14, 2005

Outline

- Introduction
- Model discrimination in neutralino and Higgs sector
- MMSSM scenario
- Parameter determination at ILC
- SUSY searches at LHC
- The ILC^{$\mathcal{L}=1/3$} option
- Outlook: Implementation of NMSSM in Fittino
- Conclusion

Introduction

- Revealing of underlying supersymmetric model:
 Essential goal of LHC and ILC
 combined LHC-ILC analysis might be crucial
- Next-to-minimal Supersymmetric Standard Model (NMSSM):
 Extension of MSSM by singlet/singlino superfield \hat{S}
- In superpotential: μ -term replaced by trilinear terms

$$\mu \hat{H}_1 \hat{H}_2 \to \lambda \hat{H}_1 \hat{H}_2 \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

 $\Rightarrow \mu \rightarrow \mu_{\text{eff}} = \lambda x \text{ with } x \equiv \langle S \rangle$

- Possible solution of μ problem, less fine-tuning
- Extended neutralino and Higgs sectors:
 - 5 neutralinos $\tilde{\chi}_i^0$, 3 scalars S_i , 2 pseudoscalars P_i

Introduction

- Distinguishing NMSSM \leftrightarrow MSSM possible via
 - Neutralino sector:

Additional neutralinos with singlino admixture accessible Different polarization behavior

Higgs sector:

Light singlet-dominated scalars or pseudoscalars

- Here we analyze scenario where
 - Higgs sector allows no distinction at LHC or ILC because only MSSM-like lightest scalar S_1 accessible
 - Masses, cross sections and BRs of neutralinos/charginos at LHC or ILC₅₀₀ (\sqrt{s} = 500 GeV) consistent with MSSM

Neutralino sector

5 neutralinos $\tilde{\chi}_i^0$ (additional singlino state)

[e.g. Franke, Fraas, '95; Choi, Miller, Zerwas, '04]

- Hints for NMSSM:
 - Singlino-dominated LSP [Ellwanger, Hugonie, '97, '98; S.H., Franke, Fraas, '00]
 - \rightarrow displaced vertices possible for $x = \langle S \rangle \gg m_W$
 - Direct production of singlino-dominated $\tilde{\chi}_i^0$:
 - → detectable at ILC up to x = O(10 TeV) \leftrightarrow singlino purity \approx 99%
 - → similar in E₆ inspired SUSY models with additional U(1) factors [S.H., Franke, Fraas, '01]

Different polarization behavior

[Moortgat-Pick, S.H., Franke, Fraas, '99] [S.H., Franke, Fraas, '00]

Higgs sector

- 5 neutral Higgs bosons: 3 scalars S_i, 2 pseudoscalars P_i
 [e.g. Franke, Fraas, '95; Miller, Nevzorov, Zerwas, '03]
- ▶ Light singlet dominated S_1 , $P_1 \rightarrow$ hint for NMSSM
 - Higgs decays: $S_2 \rightarrow S_1 S_1$ ($S_1 \rightarrow P_1 P_1$) for singlet dominated S_1 (P_1) [Ellwanger, Gunion, Hugonie, Moretti '03, '04] [Gunion, Szleper, '04]

[Ellwanger, Gunion, Hugonie, '05]

[Kraml, Porod '05]

- Singlet dominated S_1 in LHC/ILC analyses [Miller, Moretti '04]
- Sfermion decays: $\tilde{f}_2 \rightarrow \tilde{f}_1 + S_1, P_1$
- However, additional trilinear soft scalar mass parameters A_{λ} and A_{κ}
 - \rightarrow singlet dominated Higgs bosons may also be heavy
 - \rightarrow our study in the following

Higgs sector

In our scenario (tan β = 10, x = 915 GeV, λ = 0.5, κ = 0.2): Scan with NMHDECAY over A_{λ} and A_{κ} [Ellwanger, Gunion, Hugonie, '04] \rightarrow theoretical and experimental constraints satisfied for 2740 GeV $< A_{\lambda} <$ 5465 GeV and -553 GeV $< A_{\kappa} <$ 0 GeV $m_H/{
m GeV}$ 500 m_{P_1} ● For $-440 \text{ GeV} \lesssim A_{\kappa} \lesssim -90 \text{ GeV}$: 400 S_1 MSSM-like, 300 singlet dominated S_2 , P_1 heavy m_{S_2} 200 e.g. $m_{S_1} = 124 \text{ GeV},$ $m_{S_2} = 311 \text{ GeV}, m_{P_1} = 335 \text{ GeV}$ 100 m_{S_1} for A_{λ} = 4 TeV, A_{κ} = -200 GeV \cap -500 -400 -300 -200 -100 A_{κ}/GeV

NMSSM Scenario

MMSSM scenario

$$\begin{split} M_{1} &= \texttt{360 GeV}, \, M_{2} = \texttt{147 GeV}, \, \texttt{tan} \, \beta = \texttt{10}, \, x = \texttt{915 GeV}, \, \lambda = \texttt{0.5}, \, \kappa = \texttt{0.2} \\ m_{\tilde{e}_{L}} &= \texttt{240 GeV}, \, m_{\tilde{e}_{R}} = \texttt{220 GeV}, \, m_{\tilde{\nu}_{e}} = \texttt{226 GeV} \end{split}$$

Neutralino/chargino masses and mixing

	$m_{ ilde{\chi}_i^0}/{ m GeV}$	mixing character in % {gaugino, higgsino, singlino}	$m_{\tilde{\chi}_i^\pm}/Ge$	eV	
$ ilde{\chi}_1^0$	138	{ <mark>94.7</mark> , 4.7, 0.5}	$\begin{array}{c c} \chi_1^{\pm} & 139 \\ \tilde{z}^{\pm} & 474 \end{array}$		
$ ilde{\chi}^{0}_{2}$	337	{ 41.1 , 16.1, 42.9 }	χ ₂ 4/4		
$ ilde{\chi}_{3}^{0}$	367	{ <mark>56.6</mark> , 1.4, <mark>42.0</mark> }	\rightarrow small $\Delta(m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0})$		
$ ilde{\chi}_4^0$	468	{0.8, <mark>98.6</mark> , 0.6}	\rightarrow similar to AMSB		
$ ilde{\chi}_5^0$	499	{6.8, <mark>79.2</mark> , 14.0}			

Cross sections and errors

- Cross sections at ILC₅₀₀ (only $\tilde{\chi}^0_{1,2}$, $\tilde{\chi}^{\pm}_1$ accessible)
- Error estimation:
 - Statistical error for $\int \mathcal{L} = 100 \text{ fb}^{-1}$
 - Polarization uncertainty $\Delta \mathcal{P}_{e^{\pm}}/\mathcal{P}_{e^{\pm}} = 0.5\%$
 - Mass uncertainties:

1.5%: $\tilde{\chi}^{0}_{2,3}$, $\tilde{e}_{L,R}$, $\tilde{\nu}$ 2%: $\tilde{\chi}^{0}_{1}$, $\tilde{\chi}^{\pm}_{1}$

 $\sigma(e^+e^- \rightarrow \tilde{\chi}^{\pm}_1 \tilde{\chi}^{\mp}_1)$ /fb at \sqrt{s} = 400 GeV **Unpolarized beams** $\textbf{323.9} \pm \textbf{33.5}$ $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (-90\%, +60\%)$ 984.0 ± 101.6 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (+90\%, -60\%)$ 13.6 ± 1.6 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp})$ /fb at \sqrt{s} = 500 GeV $\mathbf{287.5} \pm \mathbf{16.5}$ Unpolarized beams $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (-90\%, +60\%)$ 873.9 ± 50.1 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (+90\%, -60\%)$ 11.7 + 1.2 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ /fb at \sqrt{s} = 500 GeV **Unpolarized beams** 4.0 ± 1.2 $(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (-90\%, +60\%)$ 12.1 ± 3.8 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (+90\%, -60\%)$ 0.2 ± 0.1

Strategy

- Take "measured" masses and cross sections at ILC within uncertainties
- Determine MSSM parameters with strategy for ILC [Choi, Djouadi, Dreiner, Kalinowski, Zerwas, '98] [Choi, Djouadi, Guchait, Kalinowski, Song, Zerwas, '00] [Choi, Kalinowski, Moortgat-Pick, Zerwas, '01, '02]
- Calculate masses and mixings of heavier neutralinos and charginos and compare with LHC analyses

[Desch, Kalinowski, Moortgat-Pick, Nojiri, Polesello, '03] [Allanach et al., Les Houches 2003] [Moortgat-Pick, '04]

Parameter determination at ILC

2 steps:

(I) Analysis of chargino sector

Input: $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\nu}}, \sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 400$ and 500 GeV

 \Rightarrow chargino mixing matrix elements $U_{11}^2 = [0.84, 1.0], V_{11}^2 = [0.83, 1.0]$

(II) Add information from neutralino sector: $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_2^0}$ and $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$

 \Rightarrow constraints for MSSM parameters:

$$M_1 = (377 \pm 42) \text{ GeV}$$

 $M_2 = (150 \pm 20) \text{ GeV}$
 $\mu = (450 \pm 100) \text{ GeV}$
 $\tan \beta = [1, 30]$

Parameter determination at ILC

- "Measured" masses and cross sections compatible with MSSM
- Predictions for masses and mixings of heavier particles:
 - $\tilde{\chi}_3^0$: $m_{\tilde{\chi}_3^0}$ = [352, 555] GeV, strong higgsino character
 - $\tilde{\chi}_4^0$: $m_{\tilde{\chi}_4^0}$ = [386, 573] GeV larger gaugino admixture

•
$$\tilde{\chi}^{\pm}_{2}$$
: $m_{\tilde{\chi}^{\pm}_{2}}$ = [450, 600] GeV

SUSY searches at LHC

Cascade decays of squarks and gluinos

→ Masses of heavy gauginos accessible in invariant mass distributions

In our NMSSM scenario: $\tilde{\chi}_3^0$ has large gaugino component

For simulations in mAMSB-like scenarios see e.g. [Barr, Lester, Parker, Allanach, Richardson, JHEP 0303, 045]

$$\rightarrow BR(\tilde{\chi}_3^0 \rightarrow \tilde{\ell}_{L,R}^{\pm} \ell^{\mp}) \sim 45\%$$

 \Rightarrow expected to see edges for $\tilde{\chi}_3^0 \rightarrow \tilde{\ell}_{L,R}^{\pm} \ell^{\mp}$

SUSY searches at LHC

- With input from ILC measurements: $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}}, m_{\tilde{\nu}}$
 - \rightarrow Precision of 2% for $m_{\tilde{\chi}_3^0}$ may be possible:

 $\left(m_{ ilde{\chi}_i^0}$ = (367 \pm 7) GeV ight)

→ Compatible with mass predictions in MSSM, however, not with predictions for small gaugino component!

Other possibility: Interpretation of measured gaugino as $\tilde{\chi}_4^0$: Incompatible with cross section measurements at ILC!

The ILC^{$\mathcal{L}=1/3$} option

Inconsistency of LHC and ILC analyses may motivate low-luminosity but higher-energy option $ILC_{650}^{\mathcal{L}=1/3}$

 $\rightarrow \sqrt{s}$ = 650 GeV at a third of the luminosity without hardware changes

	σ /fb at \sqrt{s} = 650 GeV			
	$e^+e^- ightarrow { ilde \chi}^0_1 { ilde \chi}^0_3$	$e^+e^- ightarrow { ilde \chi}^0_1 { ilde \chi}^0_4$	$e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^\mp$	
Unpolarized beams	12.2 ± 0.6	5.5 ± 0.4	$\textbf{2.4}\pm\textbf{0.3}$	
$(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (-90\%, +60\%)$	$\textbf{36.9} \pm \textbf{1.1}$	14.8 ± 0.7	5.8 ± 0.4	
$(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (+90\%, -60\%)$	0.6 ± 0.1	$\textbf{2.2}\pm\textbf{0.3}$	1.6 ± 0.2	

• $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_2^{\pm}$ accessible

Masses $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_2^0}$, $m_{\tilde{\chi}_3^0}$, $m_{\tilde{\chi}_4^0}$, $m_{\tilde{\chi}_1^\pm}$, $m_{\tilde{\chi}_2^\pm}$ precisely measurable

Outlook: Fit of NMSSM parameters

Goal: determination of NMSSM parameters $M_1, M_2, \tan \beta, \lambda, x = \langle S \rangle, \mu_{\text{eff}} = \lambda x, \kappa$

- Implementation of NMSSM in Fittino [Bechtle, Desch, Wienemann] [Bechtle, Desch, S.H., Moortgat-Pick, Porod, Wienemann]
 - NMSSM particle spectrum from SPheno [Porod]
 - Higgs spectrum from NMHDECAY [Ellwanger, Gunion, Hugonie]
- Input: precisely measured masses and cross sections at LHC and ILC

→ Determination of NMSSM parameters

Conclusion

- NMSSM scenario that cannot be distinguished from MSSM at LHC or ILC with $\sqrt{s} = 500 \text{ GeV}$ → example for $M_2 < M_1$
- Masses and cross sections of accessible neutralinos/charginos compatible with MSSM: no contradiction in "usual" analysis
- Combined LHC+ILC analyses: show inconsistency with MSSM
- Motivates immediate use of ILC^{L=1/3} → clear identification of NMSSM
- Outlook: Fit of NMSSM parameters

Neutralino cross sections at higher energies

$\sigma(e^+e^- ightarrow ilde{\chi}^{0}_{i} ilde{\chi}^{0}_{j})$ /fb, unpolarized	\sqrt{s} = 800 GeV	\sqrt{s} = 1000 GeV	\sqrt{s} = 3000 GeV
$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{2}$ /fb	27.6±0.2	23.6±0.2	4.0±0.06
$ ilde{\chi}_1^0 ilde{\chi}_3^0$ /fb	14.9±0.2	13.1±0.2	$2.2{\pm}0.05$
$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{4}$ /fb	6.1±0.1	4.4±0.1	$0.5{\pm}0.02$
$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{5}$ /fb	0.4±0.03	$0.5{\pm}0.03$	0.1±0.01
$ ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{2}$ /fb	7.2±0.1	10.6±0.1	$2.4{\pm}0.05$
$ ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{3}$ /fb	13.2±0.2	24.0±0.2	$5.5{\pm}0.07$
$ ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{4}$ /fb	—	5.7±0.1	$0.8{\pm}0.03$
$ ilde{\chi}^{0}_{2} ilde{\chi}^{0}_{5}$ /fb	—	$1.2 {\pm} 0.05$	0.4±0.02
$ ilde{\chi}_3^0 ilde{\chi}_3^0$ /fb	6.1±0.1	15.9±0.2	4.0±0.06
$ ilde{\chi}_3^0 ilde{\chi}_4^0$ /fb	-	0.7±0.04	0.1±0.01
$ ilde{\chi}_3^0 ilde{\chi}_5^0$ /fb	—	$1.5 {\pm} 0.05$	$0.7{\pm}0.03$
$ ilde{\chi}^{0}_{4} ilde{\chi}^{0}_{4}$ /fb	_	0.0	0.0
$ ilde{\chi}_4^0 ilde{\chi}_5^0$ /fb	—	13.7±0.2	4.1±0.06
$ ilde{\chi}_5^0 ilde{\chi}_5^0$ /fb	_	0.0	0.0

 \rightarrow 1 σ statistical error on basis of $\mathcal{L}_{800,1000}$ = 500 fb⁻¹ and \mathcal{L}_{3000} = 1000 fb⁻¹