
Improved Phase Space Treatment

of

Massive Multi-Particle Final States

Borut Paul Keřsevan

Jozef Stefan Institute

Ljubljana, Slovenija

• The presentation is based on the paper Eur. Phys. J. C 439-450 (2005)

Borut Paul Keřsevan Improved Phase Space Treatment. . . 2

Overview

• With increasing energy the complexity of processes rises along with our expectations:

ä Many physics processess (signal as well as background).

ä The number of Feynman diagrams increases to large numbers.

ä We are at the threshold of (possibly new) heavy/massive particle productions.

• Consequences:

ä Complex particle topologies.

ä Masses of final state particles not negligible.

• Requirements on the Monte-Carlo simulations of physics processes:

ä Automatise the MC simulation/generation for n particles in the final state.

ä Make it as efficient as possible:

Ô Efficient MC unweighing procedure = event generation.

Ô Every trial takes time.

Ô Efficiently cover the phase space to minimise the cross-section variance

and/or maximise the unweighing efficiency.

Borut Paul Keřsevan Improved Phase Space Treatment. . . 3

Legacy

• LEP and before:

ä Matrix elements of the process calculated for particular cases.

ä Phase space sampling techniques: the buzzword is importance sampling.

Ô Generate events in the n-body phase space Φn according to a distribution g(Φn)

that closely matches the differential cross-section g(Φn) ∼ dσ
dΦn

.

Ô Each event has a weight w = 1
g(Φn) · dσdΦn

.

Ô The event is accepted (unweighed) with the probability w
wmax

.

Ô Ideally of course g(Φn) = dσ
dΦn

, w = const.

• There are two directions in constructing g(Φn) :

Ô Adaptive algorithms like VEGAS (choice of variables an issue).

Ô G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

Ô multi-channel importance sampling, each channel describes

a certain topology:

(NEXT)EXCALIBUR a representative example,

each 2→ 4 topology constructed by hand.

A difficult issue multi-peripheral (t-channel) topologies.

Ô F. A. Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

tn−1

ti

t1

pb

pa

pn

pn−1

pi+1

pi

p2

p1

Borut Paul Keřsevan Improved Phase Space Treatment. . . 4

Today

• High quality automatised (leading order) matrix element calculations: MADGRAPH a good example.

Ô T. Stelzer and W. F. Long, Comput.Phys.Commun. 81 (1994) 357.

• Automatised phase space description trailing behind in quality and complexity.

• Prerequisites:

ä A generic description of any topology (Feynman diag. based) with massive final state particles.

Ô What one would like to do is to split the phase space sampling with any event topology

into manageable pieces = modules.

t W+

t̄

W−

g

g

b

q1

q̄2

l

ν̄l

b̄

t

t W+
W+

t̄

t̄

W−

W−

g

g

b

q1

q̄2

l

ν̄l

b̄

k4

k4 k3

k3

k2

k2

k1

k1

pa

pb

p6

p5

p4

p3

p2

p1

• As it turns out a lot of it has already been done in the ’60 (!) by K. Kajantie and E. Byckling.

Ô E. Byckling and K. Kajantie, Nucl. Phys. B9 (1969) 568.

ä Recursive expressions to split the n-body phase space into smaller subsets!

ä Just needs some modifications like adding importance sampling etc. . .

Borut Paul Keřsevan Improved Phase Space Treatment. . . 5

The s-type Branching Algorithms

p
2

= s

pb

pa

p2

p1

• The 2 body case well known. The Phase-space integral (written in Lorentz invariant form):

Φ2(s,m1,m2) =
∫

d4p1d
4p2δ(p

2
1 −m2

1)δ(p2
2 −m2

2)δ4(p− p1 − p2)Θ(p0
1)Θ(p0

2)

• translates in the CMS of the two particles into:

Φ2(s,m1,m2) =

√
λ(s,m2

1,m
2
2)

8s

∫

dΩ∗1

• with the Lorentz invariant function:

λ(s,m2
1,m

2
2) = (s− (m1 + m2)2)(s− (m1 −m2)2)

• describing the threshold behavior:

√
s ≥ (m1 + m2)

Borut Paul Keřsevan Improved Phase Space Treatment. . . 6

The s-type Branching Algorithms

kn kn−1 kn−2 ki+1 ki ki−1 k2pb

pa

p1

pn pn−1 pn−2 pi+1 pi p2

ki =
∑i

j=1 pj = (k0
i ,
~ki); M 2

i = k2
i

• Lets start with the n-body phase space:

Φn(ŝ, m1,m2, . . . ,mn) =
∫

δ4 ((pa + pb)−
∑n

i=1 pi)
∏n

i=1 d
4piδ(p

2
i −m2

i)Θ(p0
i)

• and insert two identities:

1 =
∫

dM 2
n−1δ(k

2
n−1 −M 2

n−1)Θ(k0
n−1) 1 =

∫

d4kn−1δ
4(p− kn−1 − pn)

• After some integrating we get a recursion relation:

Φn(M 2
n,m1,m2, . . . ,mn) =

(Mn−mn)2
∫

(
∑n−1
i=1 mi)2

dM 2
n−1

√
λ(M2

n,M
2
n−1,m

2
n)

8M2
n

∫

dΩ∗nΦn−1(M 2
n−1,m1,m2, . . . ,mn−1)

• The same can be achieved by grouping particles into two arbitrary sets :

k2
l =

∑l
i=1 pi and k̃2

l =
∑n

j=l+1 pj

• We can split the chain anywhere and walk in both directions

Borut Paul Keřsevan Improved Phase Space Treatment. . . 7

The t-type Branching Algorithms

q2
= t

pb

pa

p2

p1

t = q2 = (pa − p1)2

• The 2 body case also trivial but a tad more involved. In the CMS of the two particles we get:

Φ2(s,m1,m2) = 1

4
√
λ(s,m2

a,m
2
b)

t+
∫

t−
dt

2π
∫

0

dϕ∗

• where the limits:

t± = m2
a + m2

1 −
(s+m2

a−m2
b)(s+m

2
1−m2

2)

2s ∓
√
λ(s,m2

a,m
2
b)λ(s,m2

1,m
2
2)

2s

• can in general be obtained from the basic four-particle

kinematic function using the condition:

G(s, t,m2
2,m

2
a,m

2
b ,m

2
1) ≤ 0

G(x, y, z, u, v, w) = −1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 v x z
1 v 0 u y
1 x u 0 w
1 z y w 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Borut Paul Keřsevan Improved Phase Space Treatment. . . 8

The t-type Branching Algorithms

tn−1

ti

t1

pb

pa

pn

pn−1

pi+1

pi

p2

p1

tn−1

ti

t1

pb

−pn

−pn−1

pa

pi+1

pi

p2

p1

ti

pb

−pn

−pn−1

pa

pi+1

pi

p2

p1

...

...

q

qqqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqqq

q

qqqqqqqqqqqqqqq

qqqqqqqqqqqqqq

qqqqqqqqqqqqqq

qqqqqqqqqqqqq

qqqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqqq

qqqqqqqqqqqqq

qqqqqqqqqqqqqq

qqqqqqqqqqqqqq

qqqqqqqqqqqqqqq

qi+1

ki ki =
∑i

j=1 pj M 2
i = k2

i

qi = pb −
∑n

j=i+1 pj = pa − ki
q2
i = ti q2

n = tn = m2
b

• In this case the n-body phase space:

Φn(ŝ, m1,m2, . . . ,mn) =
∫

δ4 ((pa + pb)−
∑n

i=1 pi)
∏n

i=1 d
4piδ(p

2
i −m2

i)Θ(p0
i)

• translates into the recursion relation:

Φn(M 2
n,m1,m2, . . . ,mn) =

(Mn−mn)2
∫

(
∑n−1
i=1 mi)2

dM2
n−1

4
√
λ(M2

n,m
2
a,tn)

2π
∫

0

dϕ∗n

t+n−1
∫

t−n−1

dtn−1Φn−1(M 2
n−1,m1,m2, . . . ,mn−1)

• With the t±n−1 limits again given by the basic four-particle kinematic function using the condition:

G(M 2
i+1, ti,m

2
i+1,m

2
a, ti+1,M

2
i) ≤ 0

• Again, we can split the chain anywhere and walk in both directions

• Using both types of branchings we can describe/modularise any topology!

Borut Paul Keřsevan Improved Phase Space Treatment. . . 9

Describing the peaking behavior of the differential cross-section

• With the phase space transformed the way we want the dominant peaks come from the propagators in the

(squared) Matrix element.

• In general we can describe the resonant and non-resonant propagators with:

fNR(s) ∼ 1
sν

fR(s) ∼
√
s

(s−M2)2+M2Γ2

• With the inclusion of the threshold behaviour in the s-channel topologies we get:

fNR(s) =

√
λ(s,m2

a,m
2
b)

s
· 1
sν

=

√
λ(s,m2

a,m
2
b)

sν+1

fR(s) =

√
λ(s,m2

a,m
2
b)

s ·
√
s

(s−M2)2+M2Γ2 =

√
λ(s,m2

a,m
2
b)√

s·((s−M2)2+M2Γ2)

• The goal is to produce unitary (importance) sampling algorithms according to the above functions.

• This turns out to be non-trivial!

Borut Paul Keřsevan Improved Phase Space Treatment. . . 10

Short reminder: Importance sampling

• If one wants to generate events distributed according to a function f(x) in an unitary way (every trial succeeds),

one has to solve for x:

x
∫

x−
f(x) dx = r ·

x+
∫

x−
f(x) dx,

with r a pseudo random number r ∈ [0, 1].

• In the case when the integral of the function F (x) =
∫ x

x− f(x) dx is an analytic function and has a known inverse

F−1(x), one can construct explicit unitary prescriptions by:

x = F−1 (r · [F (x+)− F (x−)] + F (x−))

• In the cases the integral can not be inverted, the prescription can directly be transformed into a zero-finding

request.

• since both the integral and the first derivative (i.e. the sampling function and its cumulant) are known, the

Newton-Rhapson method is chosen as the optimal one for root finding:

g(x) =

{

x
∫

x−
f(x)dx− r ·

x+
∫

x−
f(x)dx

}

= 0, g′(x) = d
dx

{

x
∫

x−
f(x)dx− r ·

x+
∫

x−
f(x)dx

}

= f(x)

Borut Paul Keřsevan Improved Phase Space Treatment. . . 11

Integral of the resonant phase-space suppressed propagator yields a rather non-trivial result:

s
∫

(ma+mb)
2

fR(s) ds =

s
∫

(ma+mb)
2

√

λ(s,m2
a,m

2
b) ds√

s · ((s−M 2)2 + M 2Γ2)

=

s
∫

a

√

(s− a)(s− b) ds√
s · ((s−M 2)2 + M 2Γ2)

=
1√

−bΓM 2
× −2 i a bΓ

(Γ2 + M 2)

×
{

F

[

i arcsinh(

√
−b√
a

),
a

b

]

− F

[

i arcsinh(

√
−b√
s

),
a

b

]

+ (iΓ + M) (a + i (Γ + iM)M) (b + i (Γ + iM)M) Π

[

M (−iΓ + M)

b
, i arcsinh(

√
−b√
a

),
a

b

]

+ (Γ + iM) (b + (−iΓ−M)M) (i a + (Γ− iM)M) Π

[

M (iΓ + M)

b
, i arcsinh(

√
−b√
a

),
a

b

]

− (iΓ + M) (a + i (Γ + iM)M) (b + i (Γ + iM)M) Π

[

M (−iΓ + M)

b
, i arcsinh(

√
−b√
s

),
a

b

]

− (Γ + iM) (b + (−iΓ−M)M) (i a + (Γ− iM)M) Π

[

M (iΓ + M)

b
, i arcsinh(

√
−b√
s

),
a

b

]}

• F[ϕ, k] and Π[ϕ, k, n] are the Legendre’s incomplete elliptic integrals of the second and third kind with complex

arguments. Had to be coded from scratch!

Borut Paul Keřsevan Improved Phase Space Treatment. . . 12

Integral of the non-resonant phase-space suppressed propagator yields a similarly non-trivial result:

s
∫

(ma+mb)
2

fNR(s) ds =

s
∫

(ma+mb)
2

√

λ(s,m2
a,m

2
b) ds

sν+1

=
1

2
√

1− s
a ν

{−2
√

(a− s) (b− s) F1

[

−ν,−
(

1
2

)

,−
(

1
2

)

, 1− ν, s
a
, s
b

]

sν
√

1− s
b

+

√
π

√

(−a + b) (a− s) Γ [1− ν] F
[

−ν,−
(

1
2

)

, 3
2 − ν, ab

]

aν
√

1− a
b Γ

[

3
2 − ν

]

}

• The function F[α, β, γ, x] is the Gauss Hypergeometric function and the F1[α, β, β ′, γ, x, y] is the two-parameter

(Appell) Hypergeometric function.

• Explicit numerical calculation of the integral turns out to be faster, a 50-point Gauss-Legendre quadrature with√
s weight function was used.

Borut Paul Keřsevan Improved Phase Space Treatment. . . 13

Example of the implementation: AcerMC 2.x Monte-Carlo generator

• A Monte-Carlo generator of background processes for searches at ATLAS/LHC.

• Matrix element coded by MADGRAPH/HELAS

Ô T. Stelzer and W. F. Long, Comput.Phys.Commun. 81 (1994) 357.

• Phase space sampling done by native AcerMC routines:

⊕ Each channel topology constructed from the t-type and s-type modules and sampling functions described

in this talk. The event topologies derived from modified MADGRAPH/HELAS code.

⊕ multi-channel approach

Ô J.Hilgart, R. Kleiss, F. Le Dibider, Comp. Phys. Comm. 75 (1993) 191.

Ô F. A. Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

⊕ additional ac-VEGAS smoothing

Ô G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

• ac-VEGAS Cell splitting in view of maximal weight reduction based on function:

< F >cell =
(

∆cell · wtmax
cell

)

·
{

1− <wtcell>
wtmax

cell

}

• ac-VEGAS logic in this respect analogous to FOAM:

Ô S. Jadach, Comput. Phys. Commun. 130 (2000) 244.

Borut Paul Keřsevan Improved Phase Space Treatment. . . 14

Example of 2 → 4 processes: ud̄→W+g∗ → l+νlbb̄, pp @ 14 TeV

• Examples of invariant mass distributions obtained with AcerMC

W+

g

q1

q̄2

e+

ν
e

b

b̄

Sampling
dσ/dmbb

mbb [GeV/ c2]

(1
/N

) d
N

/d
m

bb

10
-3

10
-2

0 10 20 30 40 50 60 70 80 90 100

Sampling
dσ/dmWbb

mWbb [GeV/ c2]

(1
/N

) d
N

/d
m

w
bb

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0 20 40 60 80 100 120 140 160 180 200

• Some variances and unweighing efficiencies obtained using standard AcerMC 1.4 and new AcerMC 2.0

phase space sampling.

Process AcerMC 2.0 Vσ [pb2] AcerMC 1.4 Vσ [pb2] AcerMC 2.0 ε AcerMC 1.4 ε

gg → Z/(→ ``)bb̄ 0.129 · 10−2 ± 0.52 · 10−5 0.159 · 10−2 ± 0.61 · 10−5 37% 33%

qq̄ → W (→ `ν)bb̄ 0.390 · 10−2 ± 0.15 · 10−4 0.533 · 10−2 ± 0.18 · 10−4 35% 33%

gg → tt̄bb̄ 0.522 · 10−4 ± 0.19 · 10−6 0.972 · 10−4 ± 0.44 · 10−6 36% 20%

Borut Paul Keřsevan Improved Phase Space Treatment. . . 15

Example of 2 → 6 processes: gg → bb̄W+W− → bb̄`ν̄` ¯̀ν`

• The process cross-sections and variances with their uncertainties and unweighing efficiencies as obtained for

two sample 2→ 6 processes implemented in AcerMC 2.0 Monte–Carlo generator.

AcerMC 2.0 Process σ [pb] Vσ [pb2] ε

gg → tt̄→ bb̄W+W− → bb̄`ν̄` ¯̀ν` (3 Feyn./2 sampl. chan.) 4.49 0.80 · 10−4 ± 0.39 · 10−6 14%

gg → bb̄W+W− → bb̄`ν̄` ¯̀ν` (31 Feyn./13 sampl. chan.) 4.77 0.77 · 10−4 ± 0.29 · 10−5 17%

• Example of the weight distributions obtained with the two processess.

Wt × 2 • 106 [pb]

(1
/N

) d
N

/d
(W

t)

gg → tt
_
 → W+W-bb

_
 → 4f bb

_

gg → W+W-bb
_
 → 4f bb

_

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

• Bottom line is: It Works!

