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Overview

e With increasing energy the complexity of processes rises along with our expectations:
» Many physics processess (signal as well as background).
» The number of Feynman diagrams increases to large numbers.
» We are at the threshold of (possibly new) heavy/massive particle productions.

e Consequences:
» Complex particle topologies.
» Masses of final state particles not negligible.

e Requirements on the Monte-Carlo simulations of physics processes:
» Automatise the MC simulation/generation for n particles in the final state.
» Make it as efficient as possible:
= Efficient MC unweighing procedure = event generation.
=> Every trial takes time.
=> Efficiently cover the phase space to minimise the cross-section variance
and/or maximise the unweighing efficiency.
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Legacy

e LEP and before:

» Matrix elements of the process calculated for particular cases.
» Phase space sampling techniques: the buzzword is importance sampling.

-

7

Generate events in the n-body phase space ®,, according to a distribution g(®,,)

that closely matches the differential cross-section g(®,,)

_ 1  do
g(Pp)  ddy-

The event is accepted (unweighed) with the probability —“

Wmax

Each event has a weight w =

Ideally of course g(®,) = 4I=, w = const.

e There are two directions in constructing g(®,,) :

> Adaptive algorithms like VEGAS (choice of variables an issue).
- G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

e 3

multi-channel importance sampling, each channel describes
a certain topology:

(NEXT)EXCALIBUR a representative example,

each 2 — 4 topology constructed by hand.

A difficult issue multi-peripheral (t-channel) topologies.

> F. A Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

~ do_
d@n-
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Do Pn



Borut Paul KerSevan Improved Phase Space Treatment. . .

Today

e High quality automatised (leading order) matrix element calculations: MADGRAPH a good example.
- T. Stelzer and W. F. Long, Comput.Phys.Commun. 81 (1994) 357.

e Automatised phase space description trailing behind in quality and complexity.

e Prerequisites:
» A generic description of any topology (Feynman diag. based) with massive final state particles.
=>  What one would like to do is to split the phase space sampling with any event topology
into manageable pieces = modules.
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e As it turns out a lot of it has already been done in the '60 (!) by K. Kajantie and E. Byckling.
> E. Byckling and K. Kajantie, Nucl. Phys. B9 (1969) 568.
» Recursive expressions to split the n-body phase space into smaller subsets!
» Just needs some modifications like adding importance sampling etc. . .
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The s-type Branching Algorithms

e The 2 body case well known. The Phase-space integral (written in Lorentz invariant form):

Oos,mi,ma) = [ d'pid’pad(pt — mi)d(p3 — m3)6*(p — p1 — p2)O(p})O(ph)
e translates in the CMS of the two particles into:

VA sml,mz fdQ*

Do (s, M1, M9) =
e with the Lorentz invariant function:

Als,mf,m3) = (s — (m1+ma)?)(s — (m1 — m2)?)
e describing the threshold behavior:

\/E > (m1 +m2)
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The s-type Branching Algorithms

Pn Pn-1 DPn-2 Di+1 i Do

=2 p = (KL k), MP =k

.......... P1

Db kn kn—l kn—Z

e Lets start with the n-body phase space:

CI)n(§, my, ma,..., mn) — f 54 ((pa + pb) - Z?zl pi) H?:l d4pi5(p22 - m22>@<p20)

e and insert two identities:
1= fdMg—l(S(k%—l - Mg—l)@(lﬂg—ﬁ 1= fd4]€n—154(p — kp—1 — pn>

e After some integrating we get a recursion relation:

(Mn—mn)2

2 2 2
9 B 9 VANMZM2_ m?) . 5
O, (M2 my,ma,...,m,) = [ dM?, ST [dD, (M7, my,ma, ...
( ?:_11 mi)Q

e The same can be achieved by grouping particles into two arbitrary sets :

l i
ki=3piand kf =30 p;

e We can split the chain anywhere and walk in both directions

) mn—l)
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The t-type Branching Algorithms

Pa

Do

e The 2 body case also trivial but a tad more involved. In the CMS of the two particles we get:

fdtfdso

q)2(57m1’m2> - 4 )\(sm mb
a’

e where the limits:

- 2 _ (stmimm)stmiomd)  y/AemEmpA G ms)

_ 2
=m, + my 2s 25

: : i . 0

e can in general be obtained from the basic four-particle 1

kinematic function using the condition: G(x,y, 2,1, v, W) = 1 1
Y Y Y Y Y 2

G(s,t,m3,m> mi,m?) <0 1

N8y S O
S o =
SOQH»—\
O R nw
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The t-type Branching Algorithms

k _Zj 1Py M22 kQ
G =Py — 2j—i1Pj = Pa — ki

G =t q =t,=mj

e In this case the n-body phase space:

(I)n(§7 my,ma, ..., mn) — f 54 ((pa +pb) - z@ 1p2) Hz 1 d4p25( mz)@(p?)

e translates into the recursion relation:

(Mp,—mp) 2 t+
dM;
®H<M5,m1,m2,...,mn> = f 5 fdg@n f dtn 1q)n 1(Mn 1,m1,m2,...,mn_1)
w2 T ot

e With the ¢ | limits again given by the basic four-particle kinematic function using the condition:

G(M 10 Lis mzz+17 m?m bivi, Mz'z) <0

7

e Again, we can split the chain anywhere and walk in both directions

e Using both types of branchings we can describe/modularise any topology!
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Describing the peaking behavior of the differential cross-section

e With the phase space transformed the way we want the dominant peaks come from the propagators in the
(squared) Matrix element.

e In general we can describe the resonant and non-resonant propagators with:

fNR(S) ~ Sil/ fR(S) ~ (S—M2;/2§+M2F2
e With the inclusion of the threshold behaviour in the s-channel topologies we get:

INR(s) = b L= "

s sV sv+l

/\(s,mg,mQ) 3 /\(s,mg,m2)
fr(s) = — (s—M2){+M2r2 - \/5-((s—M2)2+z\b42r2)

e The goal is to produce unitary (importance) sampling algorithms according to the above functions.

e This turns out to be non-trivial!
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Short reminder: Importance sampling

e If one wants to generate events distributed according to a function f() in an unitary way (every trial succeeds),
one has to solve for x:

ff(x) de =1 - ?f(x) dzx,

with r a pseudo random number r € [0, 1].

e In the case when the integral of the function F'(z) = [ f(x)du is an analytic function and has a known inverse

F~1(x), one can construct explicit unitary prescriptions by:
v =F(r - [Flos) — Fla_)| + Fla_))

e In the cases the integral can not be inverted, the prescription can directly be transformed into a zero-finding
request.

e since both the integral and the first derivative (i.e. the sampling function and its cumulant) are known, the
Newton-Rhapson method is chosen as the optimal one for root finding:

g(z) = {f f(e)de — ?ﬂx)dx} —0, glo)=4 {f f)de — ?ﬂx)dx} ~ f(a)
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Integral of the resonant phase-space suppressed propagator yields a rather non-trivial result:

VA(s,m2,m?) ds
/fR ) ds = / /5 ( s—M2)iM2r2)

(mq+my)? ma+mb

_/ (s —a)(s—10) ds

B f ((s — M?2)2 + M2I2)
—22abF

V=0 FM2 (F2+M2)

X {F [Z arcsinh(\/\/?),%] _F [Z arcsinh(\/\/?),%]

+ (z’FJrM)(a+i(F+iM)M)(b+z’(F+z’M)M)H[M(—ii“JrM),@'arcsinh(\/\/?)a%]
+ (F+z’M)(b+(—iF—M)M)(@'a+(F_iM)M)H[M(iz+M)’ia’rCSinh(\/\/?>’%]

- <zr+M><a+z‘<r+iM>M><b+@'<F+iM>M>H[M(_Z‘?M)’msmh(g)’%]
— (F+iM)(b—|—(—z'F—M)M)(ia+(F—z'M)M)H[M(Z’I;)JrM)’iarcsinh(\/\/?),%]}

e Fp, k| and IT[p, k, n| are the Legendre's incomplete elliptic integrals of the second and third kind with complex
arguments. Had to be coded from scratch!
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Integral of the non-resonant phase-space suppressed propagator yields a similarly non-trivial result:

\/)\st
fNR SV+1

wm+mb Wm+mb

_ 1 {—Na—s (b—s)Fi|-v,—(3),— (5), 1 -1, 23]
2 /T-2v

f\/ —a+b) a—S)I‘[l—I/]F[—I/,—(%),%—I/,%]}
1——I‘[——1/}

e The function Fla, 3,7, x] is the Gauss Hypergeometric function and the Fi|a, 3, 3,7, %, y] is the two-parameter

(Appell) Hypergeometric function.

e Explicit numerical calculation of the integral turns out to be faster, a 50-point Gauss-Legendre quadrature with
V/$ weight function was used.
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Example of the implementation: AcerMC 2.x Monte-Carlo generator

e A Monte-Carlo generator of background processes for searches at ATLAS/LHC.

e Matrix element coded by MADGRAPH/HELAS

- T. Stelzer and W. F. Long, Comput.Phys.Commun. 81 (1994) 357.

e Phase space sampling done by native AcerMC routines:

¢ Each channel topology constructed from the t-type and s-type modules and sampling functions described
in this talk. The event topologies derived from modified MADGRAPH/HELAS code.

¢ multi-channel approach
- J.Hilgart, R. Kleiss, F. Le Dibider, Comp. Phys. Comm. 75 (1993) 191.

- F. A. Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

¢ additional ac-VEGAS smoothing

- G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

e ac-VEGAS Cell splitting in view of maximal weight reduction based on function:

. <Wheel] >
< F >cell - (Acell : thé%}() : {1 - th%eax }

cell

e ac-VEGAS logic in this respect analogous to FOAM:
= S. Jadach, Comput. Phys. Commun. 130 (2000) 244.
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Example of 2 — 4 processes: ud — Wtg* — 1*ybb, pp @ 14 TeV

e Examples of invariant mass distributions obtained with AcerMC

Eﬁ i; 0.02
5 == Sampling £
Z M, S
= Y - dG/dmbb %0,0175
_ _ = - =
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Z 0.015
T 7
g r
5 0.0125 |
b 'y
L
\“-t.. 0.01 [
" r
i
Ve Ml""\;.i 0.0075
107 N
W+ F
-.l"'[u,fl
i g 0.005
q1 €+ : "‘."‘1.3'_1"1‘“[ o
"“"_-‘ 0.0025
v b b b b b b b b by
0 10 20 30 40 50 60 70 80 90 100

m,, [ GeV/c” ]

07\\

7 == Sampling
~ = do/dmyy,,

T IR N L L L L L L L
20 40 60 80 100 120 140 160 180 200
2
my, [ GeV/c™]

0

e Some variances and unweighing efficiencies obtained using standard AcerMC 1.4 and new AcerMC 2.0

phase space sampling.

Process AcerMC 2.0 V, [pb?] AcerMC 1.4V, [pb?] AcerMC 2.0 ¢ AcerMC 1.4 ¢
g9 — Z/(— £0)bb 0.129-1072£0.52-107° 0.159-1072 £ 0.61 - 107° 37% 33%
qq — W(— fv)bb 0.390-10724£0.15-10"% 0.533-1072 £0.18- 10~ 35% 33%
gg — ttbb 0.522-107*£0.19-107% 0.972-107* £ 0.44 - 107 36% 20%
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Example of 2 — 6 processes: gg — bbW W~ — bblily,

e The process cross-sections and variances with their uncertainties and unweighing efficiencies as obtained for
two sample 2 — 6 processes implemented in AcerMC 2.0 Monte—Carlo generator.

AcerMC 2.0 Process o [pb] Vo [pb?] €
gg — tt — bbW W~ — bblv,lv, (3 Feyn./2 sampl. chan.)  4.49 0.80-107*£0.39-107° 14%
gg — bW W= — bbluly, (31 Feyn./13 sampl. chan.) 4.77 0.77-107140.29-10™ 17%

e Example of the weight distributions obtained with the two processess.

-1
10 F

= gg — tf — W Wbb — 4f bb

mm oo — W Wbb — 4f bb

(1/N) dN/d(Wt)

e Bottom line is: It Works!
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