Two-loop electroweak corrections to the effective weak mixing angle

W. Hollik, U. Meier, MPI MÜNCHEN S. Uccirati MPI MÜNCHEN & UNIV. TORINO

International Linear Collider Workshop (Vienna, November 2005)

- The effective mixing angle
- Fermionic 2-loop contributions
- Higgs-dependent bosonic 2-loop contributions

Z-boson observables can be expressed in terms of

• effective Z boson couplings:

$$g_V^f \to g_V^f + \Delta g_V^f, \qquad g_A^f \to g_A^f + \Delta g_A^f$$

with higher order contributions in $\Delta g^f_{V,A}$

• effective ew mixing angle (for f = e):

$$\sin^2 heta_{\mathrm{eff}} = rac{1}{4} \left(1 - \mathrm{Re} rac{g_V^e}{g_A^e}
ight)$$

complete at 1-loop order, 2-loop fermionic contributions

effective leptonic mixing angle

- very sensitive to M_H
- exp.: asymmetries of the Z resonance $\sin^2 \theta_{\rm eff} = 0.23153 \pm 0.00016$
- linear collider: expected precision 1.3×10^{-5}
- \Rightarrow precise theoretical prediction needed

$$\sin^2 \theta_{\text{eff}} = \kappa \left(1 - \frac{M_W^2}{M_Z^2} \right) \equiv \kappa s_W^2$$
$$\kappa = 1 + \Delta \kappa$$

existing calculations

- One loop corrections $\mathcal{O}(\alpha)$ Marciano, Sirlin '80
- QCD corrections $\mathcal{O}(\alpha \alpha_s)$ and $\mathcal{O}(\alpha \alpha_s^2)$ Djouadi '88 Chetyrkin, Kühn, Steinhauser '95
- electroweak higher-order corrections $\mathcal{O}(\alpha^2)$
 - two gauge-invariant subsets: fermionic/bosonic corrections
 - leading terms in top-mass expansion $\mathcal{O}\left(\alpha^2 m_t^4\right)$ and $\mathcal{O}\left(\alpha^2 m_t^2\right)$ Degrassi, Gambino, Sirlin '97
 - 3-loop leading universal terms through ρ parameter
 Faisst, Kühn, Seidensticker, Veretin '03
 Boughezal, Tausk, van der Bij '04, '05
 - complete 2-loop fermionic contributions Awramik, Czakon, Freitas, Weiglein '04 WH, Meier, Uccirati '05
 - 2-loop bosonic contributions, Higgs-dependent subset
 WH, Meier, Uccirati '05

$M_W - M_Z$ correlation

Definition of Fermi constant G_F via muon lifetime:

$$\tau_{\mu}^{-1} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F\left(\frac{m_e^2}{m_{\mu}^2}\right) \left(1 + \frac{3}{5} \frac{m_{\mu}^2}{M_W^2}\right) (1 + \Delta q)$$

 Δq : QED corrections in Fermi Model, included in definition

SM prediction:

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \left(1 + \Delta r\right)$$

 Δr : quantum correction, $\Delta r = \Delta r(m_t, M_H, ...)$

complete at 1-loop and 2-loop order

 $\rightarrow M_W = M_W(\alpha, G_F, M_Z, m_t, M_H)$

 Δr complete at the electroweak 2-loop level

- fermionic 2-loop contributions: Freitas, WH, Walter, Weiglein '00, '02; Awramik, Czakon '03
- bosonic 2-loop contributions: Awramik, Czakon '02 Onishchenko, Veretin '02 Awramik, Czakon, Onishchenko, Veretin '02

$\Delta \kappa$ from on-shell *Zll*-vertex

tree-level:

$$\Gamma^{(0)}_{\mu} = \gamma_{\mu} \left[g_V - g_A \gamma_5 \right]$$

 $g_{V\!/\!A}$: vector/axial born coupling

loop contributions:

 $\Delta \Gamma_{\mu} = \gamma_{\mu} \left[\Delta g_V - \Delta g_A \gamma_5 \right]$

classes of diagrams at 2-loop order

Calculation of two-loop corrections

- problems:
 - 2-loop renormalization

- 2-loop vertices for $q^2 \neq 0$

• strategy: split into two UV-finite parts $\widehat{\Gamma}_{(2)}^{Z\overline{l}l} \left(M_Z^2 \right) = \Gamma_{(2)}^{Z\overline{l}l} \left(M_Z^2 \right) + \delta Z_{(2)}^{Z\overline{l}l} =$

 $\begin{pmatrix} \Gamma_{(2)}^{Z\overline{l}l}(0) + \delta Z_{(2)}^{Z\overline{l}l} \end{pmatrix} + \begin{pmatrix} \Gamma_{(2)}^{Z\overline{l}l}(M_Z^2) - \Gamma_{(2)}^{Z\overline{l}l}(0) \end{pmatrix}$ finite finite

- first term : complete 2-loop renormalization but no genuine 2-loop vertices
- second term : all 2-loop vertices but simple divergence-structure

Two-loop counterterm for $\sin^2 \theta_{\text{eff}}$

$$\begin{split} \delta \sin^2 \theta_{\text{eff}}^{(2)} &= \delta s_W^2 + \frac{1}{2s_W c_W} \delta Z_{(2)}^{\gamma Z} \\ &+ s_W^2 \left(s_W^2 - c_W^2 \right) \delta Z_{(2)}^{\ell,L} \\ &- s_W^2 \left(s_W^2 - c_W^2 \right) \delta Z_{(2)}^{\ell,R} \\ &+ \text{products of one loop counterterms} \end{split}$$

$$\delta s_W^2 = \frac{M_W^2}{M_Z^2} \left(\frac{\delta M_{Z(2)}^2}{M_Z^2} - \frac{\delta M_{W(2)}^2}{M_W^2} \right) - \frac{M_W^2}{M_Z^2} \frac{\delta M_{Z(1)}^2}{M_Z^2} \left(\frac{\delta M_{Z(1)}^2}{M_Z^2} - \frac{\delta M_{W(1)}^2}{M_W^2} \right)$$

 $\delta M_{W,Z}$: W, Z mass counterms in the on-shell scheme $\delta Z^{\ell,L}$, $\delta Z^{\ell,R}$: lepton field renormalization constants $\delta Z^{\gamma Z}$: field renormalization for γZ 2-point function

Irreducible 2-loop vertex diagrams

two types of vertex diagrams

dispersion relation \rightarrow one-dimensional integral representation

Feynman-parameters, analytical manipulations Ferroglia, Passera, Passarino, Uccirati \rightarrow up to 4-dimensional integration

results for $\Delta \kappa \left([\Delta \kappa] = 10^{-4} \right)$

$\sin^2\theta_{\rm eff} =: (1 - M_W^2/M_Z^2) (1 + \Delta \kappa)$

$M_H [GeV]$	$\mathcal{O}\left(lpha ight)$	$\mathcal{O}\left(\alpha^{2}\right)$	prev. calc.
100	438.937	-0.633(1)	-0.63
200	419.599	-2.161(1)	-2.16
600	379.560	-5.008(1)	-5.01
1000	358.619	-4.733(1)	-4.73
$M_H [GeV]$	2 ferm. le	oops 1 feri	m. loop
100	13.75	8 -14.3	391(1)
200	13.75	8 -15.9	919(1)
600	13.75	8 -18.	766(1)
1000	13.75	8 -18.4	491(1)

$$M_W = 80.426 \text{ GeV}, M_Z = 91.1876 \text{ GeV},$$

 $\Gamma_Z = 2.4952 \text{ GeV}, m_t = 178.0 \text{ GeV},$
 $\Delta \alpha \left(M_Z^2 \right) = 0.05907, \alpha_s \left(M_Z^2 \right) = 0.117,$
 $G_F = 1.16637 \times 10^{-5}.$

Bosonic 2-loop contributions, Higgs-dependent part

examples for vertices:

difference $\Delta \kappa(M_H) - \Delta \kappa(M_H^0) = \Delta \kappa_{sub}$ UV finite

Numerical results ($M_H^0 = 100 \text{ GeV}$)

$M_H \left[GeV \right]$	$\Delta\kappa_{ferm,sub}^{(lpha^2)} imes 10^{-4}$	$\Delta\kappa_{bos,sub}^{(lpha^2)} imes 10^{-4}$
100	0	0
200	-1.528	0.265
600	-4.375	0.914
1000	-4.100	1.849

$$\sin^2\theta_{\rm eff} = (1 + \Delta\kappa) \left(1 - \frac{M_W^2}{M_Z^2}\right)$$

 $\sin^2 \theta_{\rm eff}$ varies by $4 \cdot 10^{-5}$ when M_W is kept fixed (\leftarrow exp)

 $G_F, \Delta r \to M_W$: strong compensation of M_H -dependence between $\Delta \kappa(M_H)$ and $M_W(M_H)$ in the bosonic 2-loop terms

Conclusions

- effective leptonic weak mixing angle is an important precision observable
- electroweak 2-loop corrections are needed
- we performed an independent calculation of the fermionic corrections in agreement with Awramik, Czakon, Freitas, Weiglein
- bosonic corrections are approached with the same methods
 Higgs-dependent part completed
 remaining constant part at work
 preliminary result [Czakon, RADCOR 2005]