Summary of LCWS05 Accelerator Sessions

> Roman Pöschl DESY ILC Meeting 8/4/05

2005 INTERNATIONAL LINEAR COLLIDER WORKSHOP

Stanford, California, USA 18-22 March, 2005

All talks can be found under http://www-conf.slac.stanford.edu/lcws05/program/session.asp#l

<u>Outline</u>

Polarized Positron Sources for the Linear Collider

- The E166 Experiment
- KEK Polarized Positron Source
- A Fabry Perot Cavity for Polarimetry
- ATF2 a facility to study ILC-like beams
 - Feedback Systems

Damping Rings

Polarized Positron Sources

Principle of the E166-Experiment

 E-166 uses the 50 GeV SLAC-Beam in conjunction with a 1m long helical Undulator for the production of Polarized Photons.

17

- These photons are converted by a ~0.5 X₀ thick Absorber into Polarized Positrons (und Electrons).
- The Polarization of the Positrons (und Photons) is measured

Schematic Overview of the E166 Polarimeter

Reversion of magnetic field in analyzer magnet leads to Asymmetry in Photon yield in CsI Calorimeter => e^+ Polarisation

First Beam Spectra - Run 518 10/10/04

Goal: Bring beam to beam dump and first noise check

Small background < 100 MeV Compare with 1000 x 5 MeV Photons= 5 GeV Energy depos. Promising Result

E166 Data taking interrupted by SLAC Accident. Resumption in June ?

Experiment@KEK

Yield: $10^4 e^+$ /bunch (Compare with $10^7 e^+$ /bunch @ E166) Laser Power is an issue Would need 100 Lasers to produce sufficient amount of e+

A Fabry Perot Cavity for Polarimetry

Studying f_{rep} and Phase shift of pulses

Wide Range of Applications !? Solution for "Power Problem" of KEK pol e+ Source ?

Alternative to Compton Polarimeter proposed by P. Schüler et al. ?

ATF2 - A facility to study ILC-like beams

Feedback On Nanosecond Time Scale – FONT Project

FONT2 results: feedback BPM (Jan 04)

Latency reduced to 20ns for FONT3 Studies were dedicated for NLC like bunch timing Still valuable for ILC like bunch timing

Damping Rings Issues

Requirements for ILC Damping Ring Damping Ring Topics Lattice design and optimization . - TME or FODO Compress 1 ms linac bunch train in to a "reasonable size" ring • Dynamic aperture - Fast kicker Automatic lattice design 2820 bunches, 2×10¹⁰ electrons or positrons per bunch, Space charge tune shift bunch length= 6 mm Coupling bump - instabilities **Collective effects** Damping of $\gamma \epsilon_{x,y}$ = 10⁻² m-rad positron beams to ($\gamma \epsilon_H$, $\gamma \epsilon_v$)=(8 × 10⁻⁶,2 × 10⁻⁶) m-rad - Electron cloud, fast ion → vacuum vessel and level Novel schemes - Low emittance Tracking to determine injection efficiency Cycle time 0.2 sec → τ=27 ms Error tolerance in lattice and wiggler - Damping wiggler Wiggler technology Dynamic aperture ≥ 10 σ Kicker R&D - Injection loss < 1 % And many more!

Some ILC Damping Ring Designs

Parameters	TESLA DB (W. Decking)	SLAC DB (Y. Cai)	LBL (DB) (A. Wolski)	ANL-FNAL Circular (A. Xiao, L. Emery)
Energy E(Gev)	5	5	5	5.0
Circumference (m)	17,000	17,014	15,815	6114
Horizontal emittance (nm)	0.50	0.62	0.715	0.8
Damping time (ms)	28	27	27	27
Tunes, v_x, v_y, v_s	76.31, 41.18, 0.071	83.73, 83.65, 0.072	75.78, 76.41, 0.41	56.58,41.62,0.0348
Momentum compaction α_{c}	1.22x10 ⁻⁴	1.11x10 ⁻⁴	5.6x10 ⁻⁴	1.42x10 ⁻⁴
Bunch length σ_z (mm)	6.04	5.90	6.0	6
Energy spread o _e /E	1.29x10 ⁻³	1.30x10 ⁻³	1.63x10 ⁻³	1.3x10 ⁻³
Chromaticity ξ_x, ξ_y	-125,-62.5	-105.27, -106.70	-90.98, -94.86	-74.4,-55.4
Energy loss per turn (MeV)	20.4	21.0	19.75	7.73
Cavity Voltage (MV)	50	50	312	27

3 "Dogbone" proposals

One "circular" proposal

Conclusion

 2005 will be interesting year for evaluation of positron sources Successful production of polarized e⁺ by KEK experiment
E166 data taking starts in June
ILC-Undulator development at Daresbury (not mentioned in my talk)

 Alternative appraoches for Polarimetry Fabry Perot Cavity vs. "Conventional" Approach Solution for "KEK Laser Power Problem"?

• ATF2 is facility to study many aspects of ILC-like beams

Personal Remark: I was happy to summarize the Accelerator Session Insight into an interesting field of research for the ILC