LumiCal Simulation

Bogdan Pawlik INP PAS Krakow Bogdan.Pawlik@ifj.edu.pl

ECFA ILC Workshop Vienna 14-17 Nov 2005

LumiCal description

- LumiCal consists of 30 tungsten disks, thickness of 1X0 each (0.35 cm)
- Inner /outer radius of disk is respectively 8 cm/28cm
- Each disk has attached silicon strip detector (0.05 cm)
- Strip Design
 - Every second detector has either 120 radial strips

(φ read-out) or 64 concentric strips (θ read-out only)

- Pad Design
 - each detector divided into 10/60 rings and 24 sectors

LCD Detector

LumiCal is to provide precise luminosity measurement based on Bhabha scattering events detection

LumiCal

LumiCal (mech. design)

10 cylinders ()
 60 cylinders ()

ECFA ILC Vienna 14-17 Nov 2005

Data Sample

- Geant3 (cuts 100keV for gammas and 1Mev for electrons)
- Events generated with Bhlumi

+ BeamStrahlung (GUINEA-PIG) at 250 GeV nominal beam energy

• Events were generated in the range

 $0.7*\theta \min < \theta < 2*\theta \max$

• Cuts applied

 $E_{cal} > 0.8E_{beam}$ 0.028 rad < θ < 0.080 rad

Reconstruction method

- For each LumiCal disk set of clusters (continuous chain of fired strips) is found.
- Their positions is estimated as weighted average of fired strip positions
- Weight of a strip is defined as $w_s = log(C^*E_s/E_c)$ where constant $C \approx 8$ was tuned to minimize offset and $\sigma(\theta)$
- All clusters from all planes are combined to form "towers" - continuous chain clusters beginning at the first plane laying within radius R around position of the first cluster

Optimization of θ -cell size

Resolution $\sigma(\theta)$ saturates at value $\sim 3*10^{-5}$ for 100 strips (2 mm cell size along the radius)

ECFA ILC Vienna 14-17 Nov 2005

θ angle resolution (64 strips)

ECFA ILC Vienna 14-17 Nov 2005

ϕ angle resolution

ECFA ILC Vienna 14-17 Nov 2005

Bias for polar angle $\Delta \theta$

ECFA ILC Vienna 14-17 Nov 2005

Calibrated Energy Resolution $\sigma(E)$

• Calibrated energy

 $\mathbf{E}_{\mathrm{CAL}} = \mathbf{E}_{\mathrm{DEP}} * f_{C}$

- Distribution is not Gaussian fitted σ = 1.2 GeV
- RMS however is 2.5
- This gives an estimate

σ(E)≈ (0.08÷0.16)*√E

at 250GeV

Energy deposit in Lumical xangle=0mr Rmin=8cm, N=129 000

Summary (0/2 mrad crossing angle)

- Stripped LumiCal with 4000 read-out channels can achieve resolution in polar angle θ order of $3x10^{-5}$ radian and offset $\Delta\theta/\theta \approx 6x10^{-5}$ which results in $\Delta L/L \approx 10^{-4}$
- Measurement of electron energy can be done with accuracy $\sigma(E) \sim (0.08 \div 0.16) \sqrt{E}$ at 250GeV
- No need to increase segmentation of θ -planes as the resolution saturates at a level $3*10^{-5}$ for about 100 strips
- Impact of beamstrahlung negligible

Implications of 20mr crossing angle

- need serpentine field and Lorentz boost
- Lab Frame is no longer CMS, no simple "back to back" Bhabha event tag
- products of beam-strahlung get into LumiCal acceptance
- θ and φ offsets become correlated due to serpentine field

Energy deposit in Lumical xangle=20mr Rmin=8cm, DiD field, N=129 000

- keeping LumiCal aligned with axis of the detector (xc=0) makes the measured distributions of Bhabha scattering asymmetric
- aligning LumiCal with outgoing beam pipes (xc=-3.14 cm for 20mr crossing angle, increases background energy deposit by factor of 10.
- in order to reduce background energy seen in LumiCal, inner radius of sensors can be increased from 8cm to 11.5cm and 13.5 cm for xc=0 and xc = -3.14 respectively.
- this procedure reduces background to harmless level of 0.3-0.4 GeV per bunch crossing as we had for 0mr crossing angle
- reconstruction accuracy remains the same as for 0mr setup, but seen cross-section drops from 5.8 nb to 1.8/1.5 nb for xc = 0.
 and xc = -3.14 cm respectively.

Energy deposit in Lumical xangle=20mr enlarged Rmin, DiD field, N=129 000

20 mr crossing angle, anti-DID field

nominal Rmin = 8 cm LumiCal aligned with out-beam xc = 3.14 cm

harmless background performance as for 0/2 mr

Summary (20mr crossing angle)

- To maintain same as for 0/2mr performance we need to move LumiCal to be aligned with outgoing beam and
- with DID field
 - inner radius must be enlarged to 13 cm (measured cross-section drops by factor of 4)
- with anti-DID field
 - no need to change dimensions

Performance of present configurations

Parameter	Pad Performance	Strip Performance
Energy resolution	$25\%~(\sqrt{GeV})$	$8:16\%(\sqrt{GeV})$
θ resolution	3.5 * 10 ⁻⁵ rad	2.9 * 10 ⁻⁵ rad
φ resolution	10 ⁻² rad	10 ⁻³ rad
$\Delta heta$	~ 1.5 * 10 ⁻⁶ rad	~2.1* 10 ⁻⁶ rad
Electronics channels	25,200	3720 (with bonding sectors) 13,320 (without bonding)

With this performance the goal $\Delta L/L \sim 10^{-4}$ can be reached.

Simulated signal size in electron charge units for LumiCal

ECFA ILC Vienna 14-17 Nov 2005