Experimental top threshold scan

Stewart T. Boogert University College London

Talk outline

- Introduction
 - Top threshold measurement
 - Beamstrahlung extraction
 - New parameterizations now available
 - Two asymmetric beam extraction just started
 - Various beam parameters possible (P. Bambade's talk in MDI session)
- Top event generator
 - Current status of theoretical calculations
 - Differential distributions (A_{FB} and p_{top})
 - possibly extend sensitivity of top parameter extraction
 - Polarisation?
 - Properly implement beam effects
- Precision top mass essential Standard model measurement
 - Test of QCD and variants at the top threshold
 - Constrain standard model (in conjunction with Higgs measurement)
- Top mass measurement requirement of 50 MeV
 - ~3 parts in 10^4
 - High precision possible due to beam line constraint

Luminosity spectrum

- Centre of mass energy variation, three main sources
 - Accelerator energy spread
 - Typically ~0.1%
 - Beamstrahlung
 - Typically between 0.5% and possibly even 6%
 - Initial state radiation (ISR)
 - Calculable to high precision in QED
 - Complicates measurement of Beamstrahlung and accelerator energy spread
 - Process dependence?

Luminosity spectrum simulation

Simulation

- Accelerator simulation to define beam before collision
 - Distribution of particles in 6 dimensional phase space (position, angles & energy
- Beamstrahlung input from
 - Guinea-Pig (collision dynamics simulation)
 - CIRCE (parameterization based on Guinea-Pig output)
- Bhabha scattering based on BHWIDE, wide angle Bhabha scattering Monte Carlo
- Lumi spectrum format
 - Histogram (distribution)
 - Discrete events (macro particles)

Problems

 Interface between Guinea-Pig and Monte Carlo generators

Bhabha acolinearity

- Bhabha scattering to monitor dL/dE
 - $e^+e^- \rightarrow e^+e^-n(\gamma)$
 - High rate compared with top threshold rate
- Two approximate reconstruction methods
 - Only use angles of scattered electron and positron
 - Both based on single photon beamstrahlung
 - Frary-Miller

$$x = 1 - \frac{\theta_A}{2\sin\bar{\theta}}$$

- K. Moenig

$$x = \sqrt{\cot \frac{\theta_p}{2} \cot \frac{\theta_e}{2}}$$

Extraction of luminosity spectrum

- Bhabha lumi-spectrum reconstruction performance
 - Reasonable given assumptions in x reconstruction
 - Definition of true luminosity spectrum problematic due to overlap of ISR and FSR in Bhabha scattering
 - Main differences between measured and true x at x~1
- Scatter plot of x_{recon} and x_{true}
 - Mainly diagonal contribution, good!
 - Degeneracy at large x
 - Mainly due to the single photon approximation
- Problem now
 - How to extract beamstrahlung and beam spread from the observable x
 - Two different methods being investigated
 - Unfolding (F. Poirer)
 - Fitting (SB, K. Moenig, E. Torrence)

Top threshold simulation

- Top threshold simulated using Toppik
 - Hoang and Teubner
 - NNLO pNRQCD

- Two alternative methods are used to smear the threshold curve
 - Histogram (binned)

$$\sigma'(\sqrt{s}) = \int_{0}^{1} p(x)\sigma(x\sqrt{s})dx$$

- Large number of bins required when including all effects
 - ISR: 0<x<1
 - Beamstrahlung : 0.75<x<1
 - Energy spread : 0.99<x<1.01
- Event sample (unbinned)
 - Large number of samples (N) of x distributed in a luminosity spectrum

$$\sigma'(\sqrt{s}) = \frac{1}{N} \sum_{i=1}^{N} \sigma(x_i \sqrt{s})$$

Extraction of top parameters

- Generate data with
 - 20 equidistant scan points
 - Range 346→354 GeV
 - High luminosity, 30nb per point
 - Nominal luminosity spectrum
 - Linac energy spread 0.1%
 - CIRCE parameters on slide 3
- Fit cross section
 - Smeared with different luminosity spectra
 - Measured from Bhabha analysis
 - True luminosity spectrum from accelerator simulation or parameterization
 - Form usual χ² between "data" and "theory" cross section

Differential measurements

- Only discuss the effect of beam energy on total cross section
- A_{FB} and p_{peak} have still not been included
 - Still require precision on the beam energy measurement
- How to best include the effects of beam energy variation?
 - Averaging over luminosity spectrum possible but what about possibly asymmetric boost due to beamstrahlung?
 - Top Monte Carlo generator required
 - Plan to extent analysis to use event style generator, possibly reweighing events to match Toppik predictions

Accelerator simulation

- Integrated simulations of whole accelerator available
 - Linac (beam spread)
 - Beam delivery system (associated diagnostics, including beam energy spectrometer)
 - Guinea-pig collision simulation
 - Designed for fast beam feedback and general accelerator design simulation and optimisation
 - Simulation of first 600 bunches in the train
- Currently available
 - 500 GeV and 1 TeV samples available
 - 350 GeV (top threshold) sample just generated (G. White)
 - Switch off some of the Linac + re-optimize beam delivery
- See G. White's webpage http://hepwww.ph.qmul.ac.uk/lcdata/ for more details

350 GeV accelerator simulations

- 350 GeV ILC simulations now available
 - Requires re-optimization of the linac and beam delivery system
 - Thanks to G. White for producing data files!

	CME (500)	CME (350)
a0	0.337	0.307
a2	18.576	28.739
a3	0.419	0.319
bs (%)	0.089	0.096

- Check for other differences between 350 and 500 GeV simulations
- Use this parameterization to apply to Bhabha and top samples
- Working now to extract
 Beamstrahlung parameters from this "realistic" data

Top threshold enerator

Event generator required

- Essential for determining detector effects, reconstruction efficiency etc
- Proper implementation of beam effects on differential quantities

Theoretical input

- NNLO program for total cross section
- NNLL, renormalization group improved total cross section
- NLO re-scattering corrections

Implementation

- Fast Greens function interpolation based on NNLO Green's functions
- Naïve decay of top quarks

Summary

- Progress since Snowmass limited
 - Precision analysis must track developments in beam parameter sets
 - Working on extraction of beamstrahlung parameters from Bhabha acolinearity problematic
 - Parameterization of Beamstrahlung difficult
 - Fitting of acolinearity distribution more complicated
 - Electron beam ≠ positron beam
 - See talk by P. Bambade in Monday's MDI session
- Collaboration started for Top threshold generator
 - Teubner, Gournarnis & Boogert
 - Fast interpolation of s and p wave top threshold Green's functions